山东省枣庄市第九中学2024届数学八上期末质量检测模拟试题含解析_第1页
山东省枣庄市第九中学2024届数学八上期末质量检测模拟试题含解析_第2页
山东省枣庄市第九中学2024届数学八上期末质量检测模拟试题含解析_第3页
山东省枣庄市第九中学2024届数学八上期末质量检测模拟试题含解析_第4页
山东省枣庄市第九中学2024届数学八上期末质量检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省枣庄市第九中学2024届数学八上期末质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下列各运算中,计算正确的是()A. B. C. D.2.如图,的周长为,分别以为圆心,以大于的长为半径画圆弧,两弧交于点,直线与边交于点,与边交于点,连接,的周长为,则的长为()A. B. C. D.3.2015年诺贝尔生理学或医学奖得主中国科学家屠呦呦,发现了一种病毒的长度约为0.00000456毫米,则数据0.00000456用科学记数法表示为()A.0.456×10﹣5 B.4.56×10﹣6 C.4.56×10﹣7 D.45.6×10﹣74.已知线段a=2cm,b=4cm,则下列长度的线段中,能与a,b组成三角形的是()A.2cm B.4cm C.6cm D.8cm5.一元二次方程,经过配方可变形为()A. B. C. D.6.如图,已知,点...在射线上,点...在射线上;...均为等边三角形,若,则的边长为()A. B. C. D.7.下列二次根式中属于最简二次根式的是()A. B. C. D.8.一个三角形的两边长分别为和,且第三边长为整数,这样的三角形的周长最大值是()A. B. C. D.9.下列图形中,不是轴对称图形的是()A.角 B.等边三角形 C.平行四边形 D.圆10.如图,观察图中的尺规作图痕迹,下列说法错误的是()A. B. C. D.11.如果分式的值为0,那么的值为()A.-1 B.1 C.-1或1 D.1或012.如图,已知,点,,,…在射线上,点,,,…在射线上,,,,…均为等边三角形,若,则的边长为()A.8 B.16 C.24 D.32二、填空题(每题4分,共24分)13.如图,在△ABC中,AB=AC=24厘米,BC=16厘米,点D为AB的中点,点P在线段BC上以4厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.当点Q的运动速度为_______厘米/秒时,能够在某一时刻使△BPD与△CQP全等.14.如图,小明的父亲在院子的门板上钉了一个加固板,从数学角度看,这样做的原因是______.15.计算:_______________.16.要使分式有意义,则x的取值范围为_____.17.如果,则__________.18.直线与平行,则的图象不经过____________象限.三、解答题(共78分)19.(8分)如图,在△ABC中,AB=AC,点P是边BC上的中点,PD⊥AB,PE⊥AC,垂足分别为点D、E.(1)求证:PD=PE;(2)若AB=6cm,∠BAC=30°,请直接写出PD+PE=cm.20.(8分)已知,,求下列各式的值:(1);(2)21.(8分)猜想与证明:小强想证明下面的问题:“有两个角(图中的和)相等的三角形是等腰三角形”.但他不小心将图弄脏了,只能看见图中的和边.(1)请问:他能够把图恢复成原来的样子吗?若能,请你帮他写出至少两种以上恢复的方法并在备用图上恢复原来的样子.(2)你能够证明这样的三角形是等腰三角形吗?(至少用两种方法证明)22.(10分)某学校是乒乓球体育传统项目学校,为进一步推动该项目的开展,学校准备到体育用品店购买直拍球拍和横拍球拍若干副,并且每买一副球拍必须要买10个乒乓球,乒乓球的单价为2元/个,若购买20副直拍球拍和15副横拍球拍花费9000元;购买10副横拍球拍比购买5副直拍球拍多花费1600元.(1)求两种球拍每副各多少元?(2)若学校购买两种球拍共40副,且直拍球拍的数量不多于横拍球拍数量的3倍,请你给出一种费用最少的方案,并求出该方案所需费用.23.(10分)(模型建立)(1)如图1,等腰直角三角形ABC中,∠ACB=90°,CA=CB,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△CDA≌△BEC.(模型运用)(2)如图2,直线l1:y=x+4与坐标轴交于点A、B,将直线l1绕点A逆时针旋转90°至直线l2,求直线l2的函数表达式.(模型迁移)如图3,直线l经过坐标原点O,且与x轴正半轴的夹角为30°,点A在直线l上,点P为x轴上一动点,连接AP,将线段AP绕点P顺时针旋转30°得到BP,过点B的直线BC交x轴于点C,∠OCB=30°,点B到x轴的距离为2,求点P的坐标.24.(10分)按要求作图(1)已知线段和直线,画出线段关于直线的对称图形;(2)如图,牧马人从地出发,先到草地边某一处牧马,再到河边饮马,然后回到处.请画出最短路径.25.(12分)小军的爸爸和小慧的爸爸都是出租车司机,他们在每天的白天、夜间都要到同一加油站各加一次油.白天和夜间的油价不同,有时白天高,有时夜间高,但不管价格如何变化,他们两人采用固定的加油方式:小军的爸爸不论是白天还是夜间每次总是加油,小慧的爸爸则不论是白天还是夜间每次总是花元钱加油.假设某天白天油的价格为每升元,夜间油的价格为每升元.问:(1)小军的爸爸和小慧的爸爸在这天加油的平均单价各是多少?(2)谁的加油方式更合算?请你通过数学运算,给以解释说明.26.已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.

参考答案一、选择题(每题4分,共48分)1、C【分析】根据积的乘方、同底数幂的除法、多项式的乘法逐项判断即可.【题目详解】A.,错误;B.,错误;C.,正确;D.,错误.故选C.【题目点拨】本题考查积的乘方、同底数幂的除法、多项式的乘法等知识,熟练掌握各计算公式是解题的关键.2、A【分析】将△GBC的周长转化为BC+AC,再根据△ABC的周长得出AB的长,由作图过程可知DE为AB的垂直平分线,即可得出BF的长.【题目详解】解:由作图过程可知:DE垂直平分AB,∴BF=AB,BG=AG,又∵△GBC的周长为14,则BC+BG+GC=BC+AC=14,∴AB=26-BC-AC=12,∴BF=AB=6.故选A.【题目点拨】本题考查了作图-垂直平分线,垂直平分线的性质,三角形的周长,解题的关键是△GBC的周长转化为BC+AC的长,突出了“转化思想”.3、B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:0.00000456=4.56×10﹣6;故选:B.【题目点拨】本题考查了科学计数法,灵活利用科学计数法表示绝对值小于1的数是解题的关键.4、B【分析】利用三角形三边关系判断即可,两边之和第三边两边之差.【题目详解】解:,,第三边能与,能组成三角形的是,故选.【题目点拨】考查了三角形三边关系,利用三边关系判断时,常用两个较小边的和与较大的边比较大小.两个较小边的和较大的边,则能组成三角形,否则,不可以.5、A【解题分析】x2-4x+4-4-6=(x-2)2-10=0,即(x-2)2=10;故选A.6、C【分析】利用等边三角形的性质得到∠B1A1A2=60°,A1B1=A1A2,则可计算出∠A1B1O=30°,所以A1B1=A1A2=OA1,利用同样的方法得到A2B2=A2A3=OA2=2OA1,A3B3=A3A4=22•OA1,A4B4=A4A5=23•OA1,利用此规律得到A2019B2019=A2019A2020=3•OA1.【题目详解】∵△A1B1A2为等边三角形,∴∠B1A1A2=60°,A1B1=A1A2.∵∠MON=30°,∴∠A1B1O=30°,∴A1B1=OA1,∴A1B1=A1A2=OA1,同理可得A2B2=A2A3=OA2=2OA1,∴A3B3=A3A4=OA3=2OA2=22•OA1,A4B4=A4A5=OA4=2OA3=23•OA1,…,∴A2019B2019=A2019A2020=OA2019=3•OA1=3.故选:C.【题目点拨】本题考查了规律型:图形的变化类.首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.也考查了等边三角形的性质.7、B【分析】结合最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.进行解答即可.【题目详解】解:A、,故本选项错误;B、是最简二次根式,故本选项正确;C、,故本选项错误;D、,故本选项错误;故选B.【题目点拨】本题考查了最简二次根式,熟练掌握最简二次根式的概念是解答本题的关键.8、C【分析】根据三角形的三边关系求出第三边长的取值范围,再结合已知条件求出第三边长的最大整数值,即可求出三角形的周长最大值.【题目详解】解:∵一个三角形的两边长分别为和∴5-2<第三边长<5+2解得:3<第三边长<7∵第三边长为整数,∴第三边长可以为4、5、6∴第三边长的最大值为6∴三角形的周长最大值为2+5+6=13故选C.【题目点拨】此题考查的是根据三角形的两边长,求第三边的取值范围和求三角形的周长,掌握三角形的三边关系和三角形的周长公式是解决此题的关键.9、C【解题分析】分析:根据轴对称图形的概念求解,看图形是不是关于直线对称.解:A、角是轴对称图形;B、等边三角形是轴对称图形;C、平行四边形只是中心对称图形,不是轴对称图形.D、圆既是轴对称图形,也是中心对称图形;故选C.10、A【分析】由作法知,∠DAE=∠B,进而根据同位角相等,两直线平行可知AE∥BC,再由平行线的性质可得∠C=∠EAC.【题目详解】由作法知,∠DAE=∠B,∴AE∥BC,∴∠C=∠EAC,∴B、C、D正确;无法说明A正确.故选A.【题目点拨】本题主要考查了尺规作图,平行线的性质与判定的综合应用,熟练掌握平行线的性质与判定方法是解答本题的关键.解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.11、B【分析】根据分式的值为零的条件可以求出x的值.【题目详解】根据题意,得|x|-1=2且x+1≠2,解得,x=1.故选B.【题目点拨】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.12、D【分析】先根据等边三角形的各边相等且各角为60°得:∠B1A1A2=60°,A1B1=A1A2,再利用外角定理求∠OB1A1=30°,则∠MON=∠OB1A1,由等角对等边得:B1A1=OA1=2,得出△A1B1A2的边长为2,再依次同理得出:△A2B2A3的边长为4,△A4B4A5的边长为:24=16,则△A5B5A6的边长为:25=1.【题目详解】解:∵△A1B1A2为等边三角形,

∴∠B1A1A2=60°,A1B1=A1A2,

∵∠MON=30°,

∴∠OB1A1=60°-30°=30°,

∴∠MON=∠OB1A1,

∴B1A1=OA1=2,

∴△A1B1A2的边长为2,

同理得:∠OB2A2=30°,

∴OA2=A2B2=OA1+A1A2=2+2=4,

∴△A2B2A3的边长为4,

同理可得:△A3B3A4的边长为:23=8,

△A4B4A5的边长为:24=16,

则△A5B5A6的边长为:25=1,

故选:D.【题目点拨】本题考查了等边三角形的性质和外角定理,难度不大,需要运用类比的思想,依次求出各等边三角形的边长,并总结规律,才能得出结论.二、填空题(每题4分,共24分)13、4或6【分析】求出BD,根据全等得出要使△BPD与△CQP全等,必须BD=CP或BP=CP,得出方程12=16-4x或4x=16-4x,求出方程的解即可.【题目详解】设经过x秒后,使△BPD与△CQP全等,∵AB=AC=24厘米,点D为AB的中点,∴BD=12厘米,∵∠ABC=∠ACB,∴要使△BPD与△CQP全等,必须BD=CP或BP=CP,即12=16-4x或4x=16-4x,x=1,x=2,x=1时,BP=CQ=4,4÷1=4;x=2时,BD=CQ=12,12÷2=6;即点Q的运动速度是4或6,故答案为:4或6【题目点拨】本题考查了全等三角形的判定的应用,关键是能根据题意得出方程.14、三角形的稳定性【题目详解】钉了一个加固板,即分割成了三角形,故利用了三角形的稳定性故答案为:三角形的稳定性15、【分析】先把化成,再根据同底数幂的乘法计算即可.【题目详解】解:原式=.【题目点拨】本题是对同底数幂乘法的考查,熟记同底数幂相乘,底数不变,指数相加.16、x≠﹣2【解题分析】根据分式有意义的条件可得x+2≠0,解这个不等式即可求出答案.【题目详解】由题意可知:x+2≠0,∴x≠﹣2,故答案为x≠﹣2.【题目点拨】本题考查分式有意义的条件,解题的关键是正确理解分式有意义的条件:分母不为0.17、;【分析】先利用平方差公式对原式进行变形,然后整理成的形式,再开方即可得出答案.【题目详解】原式变形为即∴∴故答案为:.【题目点拨】本题主要考查平方差公式和开平方,掌握平方差公式是解题的关键.18、四【解题分析】根据两直线平行的问题得到k=2,然后根据一次函数与系数的关系判定y=2x+1所经过的象限,则可得到y=kx+1不经过的象限.解:∵直线y=kx+1与y=2x-1平行,∴k=2,∴直线y=kx+1的解析式为y=2x+1,∴直线y=2x+1经过第一、二、三象限,∴y=kx+1不经过第四象限.故答案为四.三、解答题(共78分)19、(1)见解析;(2)1【分析】(1)根据等腰三角形性质可知,再由“AAS”可证△PDB≌△PEC,可得PD=PE;(2)由直角三角形的性质可得CH=1cm,由S△ABC=S△ABP+S△ACP,可求解.【题目详解】解:(1)∵AB=AC,∴∠B=∠C,∵点P是边BC上的中点,∴PB=PC,且∠B=∠C,∠PDB=∠PEC=90°,∴△PDB≌△PEC(AAS)∴PD=PE;(2)过点C作于H,连接AP,,,,,,故答案为:1.【题目点拨】本题考查了全等三角形的判定和性质,涉及了面积法求高、10°直角三角形的性质等知识点.利用面积法列出等式是本题的关键.20、【分析】(1)提出公因式2xy后即可代入求值;(2)可代入求出(x-y)2,再开方即可求得答案.【题目详解】(1)∵,∴原式=(2)∵==4∴=【题目点拨】此题考察代数式求值,注意(2)中x+y与x-y之间的关系转化.21、(1)能,具体见解析;(2)证明见解析.【分析】(1)方法1:量出∠C的大小;作∠B=∠C;则∠B的一条边和∠C的一条边的延长线交于点A;方法2:作边BC的垂直平分线与∠C的另一边的延长线交于点A,连接AB即可;方法3:将长方形纸片对折使点B和点C重合,找到∠C的另一边的延长线与折痕的交点A,连接AB即可;(2)证法1:作∠A的平分线AD,交BC与点D,利用AAS即可证出△ABD≌△ACD,从而得出AB=AC,根据等腰三角形的定义即可得出结论;证法2:过A作AD⊥BC于D,利用AAS即可证出△ABD≌△ACD,从而得出AB=AC,根据等腰三角形的定义即可得出结论.【题目详解】解:(1)方法1:量出∠C的大小;作∠B=∠C;则∠B的一条边和∠C的一条边的延长线交于点A.如下图所示:△ABC即为所求方法2:作边BC的垂直平分线与∠C的另一边的延长线交于点A,连接AB,如下图所示:△ABC即为所求.方法3:如图,将长方形纸片对折使点B和点C重合,找到∠C的另一边的延长线与折痕的交点A,连接AB,如下图所示:△ABC即为所求(2)证法1:作∠A的平分线AD,交BC与点D∴∠BAD=∠CAD在△ABD和△ACD中∴△ABD≌△ACD∴AB=AC,即△ABC为等腰三角形;证法2:过A作AD⊥BC于D,∴∠ADB=∠ADC=90°在△ABD和△ACD中∴△ABD≌△ACD∴AB=AC,即△ABC为等腰三角形.【题目点拨】此题考查的是根据一个底角和底边构造等腰三角形、全等三角形的判定及性质和等腰三角形的判定,掌握垂直平分线的性质、等角对等边、等腰三角形的定义和全等三角形的判定及性质是解决此题的关键.22、(1)直拍球拍每副220元,横拍球每副260元;(2)购买直拍球拍30副,则购买横拍球10副时,费用最少.【解题分析】(1)设直拍球拍每副x元,根据题中的相等关系:20副直拍球拍的价钱+15副横拍球拍的价钱=9000元;10副横拍球拍价钱-5副直拍球拍价钱=1600元,建立方程组即可求解;(2)设购买直拍球拍m副,根据题意列出不等式可得出m的取值范围,再根据题意列出费用关于m的一次函数,并根据一次函数的性质解答即可.【题目详解】解:(1)设直拍球拍每副x元,横拍球每副y元,由题意得,解得,,答:直拍球拍每副220元,横拍球每副260元;(2)设购买直拍球拍m副,则购买横拍球(40-m)副,由题意得,m≤3(40-m),解得,m≤30,设买40副球拍所需的费用为w,则w=(220+20)m+(260+20)(40-m)=-40m+11200,∵-40<0,∴w随m的增大而减小,∴当m=30时,w取最小值,最小值为-40×30+11200=10000(元).答:购买直拍球拍30副,则购买横拍球10副时,费用最少.点睛:本题主要考查二元一次方程组、不等式和一次函数的性质等知识点.在解题中要利用题中的相等关系和不等关系建立方程组和不等式,而难点在于要借助一次函数建立解决实际问题的模型并根据自变量的取值范围和一次函数的增减性作出决策.23、(1)见解析;(2);(3)点P坐标为(4,0)或(﹣4,0)【分析】(1)由“AAS”可证△CDA≌△BEC;(2)如图2,在l2上取D点,使AD=AB,过D点作DE⊥OA,垂足为E,由(1)可知△BOA≌△AED,可得DE=OA=3,AE=OB=4,可求点D坐标,由待定系数法可求解析式;(3)分两种情况讨论,通过证明△OAP≌△CPB,可得OP=BC=4,即可求点P坐标.【题目详解】(1)证明:∵AD⊥DE,BE⊥DE,∴∠D=∠E=90°,∴∠BCE+∠CBE=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∴∠ACD=∠CBE,又CA=BC,∠D=∠E=90°∴△CDA≌△BEC(AAS)(2)如图2,在l2上取D点,使AD=AB,过D点作DE⊥OA,垂足为E∵直线y=x+4与坐标轴交于点A、B,∴A(﹣3,0),B(0,4),∴OA=3,OB=4,由(1)得△BOA≌△AED,∴DE=OA=3,AE=OB=4,∴OE=7,∴D(﹣7,3)设l2的解析式为y=kx+b,得解得∴直线l2的函数表达式为:(3)若点P在x轴正半轴,如图3,过点B作BE⊥OC,∵BE=2,∠BCO=30°,BE⊥OC∴BC=4,∵将线段AP绕点P顺时针旋转30°得到BP,∴AP=BP,∠APB=30°,∵∠APC=∠AOC+∠OAP=∠APB+∠BPC,∴∠OAP=∠BPC,且∠OAC=∠PCB=30°,AP=BP,∴△OAP≌△CPB(AAS)∴OP=BC=4,∴点P(4,0)若点P在x轴负半轴,如图4,过点B作BE⊥OC,∵BE=2,∠BCO=30°,BE⊥OC∴BC=4,∵将线段AP绕点P顺时针旋转30°得到BP,∴AP=BP,∠APB=30°,∵∠APE+∠BPE=30°,∠BCE=30°=∠BPE+∠PBC,∴∠APE=∠PBC,∵∠AOE=∠BCO=30°,∴∠AOP=∠BCP=150°,且∠APE=∠PBC,PA=PB∴△OAP≌△CPB(AAS)∴OP=BC=4,∴点P(﹣4,0)综上所述:点P坐标为(4,0)或(﹣4,0)【题目点拨】本题是一道关于一次函数的综合题目,涉及到的知识点有全等三角形的判定定理及其性质、一次函数图象与坐标轴的交点、用待定系数法求一次函数解析式、旋转的性质等,掌握以上知识点是解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论