版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届白山市重点中学八年级数学第一学期期末综合测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.在平面直角坐标系中,将函数的图象向上平移6个单位长度,则平移后的图象与x轴的交点坐标为()A.(2,0) B.(-2,0) C.(6,0) D.(-6,0)2.估计+1的值()A.在1和2之间 B.在2和3之间C.在3和4之间 D.在4和5之间3.如图,在△ABC中,AB=AC=5,BC=6,点M为BC的中点,MN⊥AC于点N,则MN等于()A.
B.
C.
D.4.如图,在△ABC中,∠ABC,∠ACB的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC的度数为()A.118° B.119° C.120° D.121°5.施工队要铺设1000米的管道,因在中考期间需停工2天,每天要比原计划多施工30米才能按时完成任务.设原计划每天施工x米,所列方程正确的是()A.=2 B.=2C.=2 D.=26.如图所示,三角形ABC的面积为1cm1.AP垂直∠B的平分线BP于P.则与三角形PBC的面积相等的长方形是()A.B.C.D.7.若分式有意义,则的取值范围为()A. B. C. D.8.下列标志中,可以看作是轴对称图形的是()A. B. C. D.9.如图,已知和都是等边三角形,且、、三点共线.与交于点,与交于点,与交于点,连结.以下五个结论:①;②;③;④是等边三角形;⑤.其中正确结论的有()个A.5 B.4 C.3 D.210.已知m=,则以下对m的值估算正确的()A.2<m<3 B.3<m<4 C.4<m<5 D.5<m<6二、填空题(每小题3分,共24分)11.______________.12.如图,是的中线,、分别是和延长线上的点,且,连接、,下列说法:①和的面积相等,②,③,④,⑤,其中一定正确的答案有______________.(只填写正确的序号)13.如图,在△ABC中,BD和CE是△ABC的两条角平分线.若∠A=52°,则∠1+∠2的度数为_______.14.如图,在△ABC中,∠ACB=90°,∠BAC=40°,在直线AC上找点P,使△ABP是等腰三角形,则∠APB的度数为____________.15.在某个电影院里,如果用(2,15)表示2排15号,那么5排9号可以表示为_____.16.已知x2+y2+z2-2x+4y-6z+14=0,则x+y+z=________.17.小明同学在计算一个多边形(每个内角小于180°)的内角和时,由于粗心少算一个内角,结果得到的和是2020°,则少算了这个内角的度数为_________.18.把厚度相同的字典整齐地叠放在桌面上,已知字典的离地高度与字典本数成一次函数,根据图中所示的信息,给出下列结论:①每本字典的厚度为5cm;②桌子高为90cm;③把11本字典叠成一摞,整齐地放在这张桌面上,字典的离地高度为205cm;④若有x本字典叠成一摞放在这张桌面上,字典的离地高度为y(cm),则y=5x+1.其中说法正确的有________.三、解答题(共66分)19.(10分)某次歌唱比赛,三名选手的成绩如下:测试项目测试成绩甲乙丙创新728567唱功627776综合知识884567(1)若按三项的平均值取第一名,谁是第一名;(2)若三项测试得分按3:6:1的比例确定个人的测试成绩,谁是第一名?20.(6分)如图,在平面直角坐标系中,点为坐标原点,的顶点、的坐标分别为,,并且满足,.(1)求、两点的坐标.(2)把沿着轴折叠得到,动点从点出发沿射线以每秒个单位的速度运动.设点的运动时间为秒,的面积为,请用含有的式子表示.21.(6分)如图,中,点,分别是边,的中点,过点作交的延长线于点,连结.(1)求证:四边形是平行四边形.(2)当时,若,,求的长.22.(8分)如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,延长AE交BC的延长线于点F.(1)求证:△DAE≌△CFE;(2)若AB=BC+AD,求证:BE⊥AF.23.(8分)综合与实践阅读以下材料:定义:两边分别相等且夹角互补的两个三角形叫做“互补三角形”.用符号语言表示为:如图①,在△ABC与△DEF中,如果AC=DE,∠C+∠E=180°,BC=EF,那么△ABC与△DEF是互补三角形.反之,“如果△ABC与△DEF是互补三角形,那么有AC=DE,∠C+∠E=180°,BC=EF”也是成立的.自主探究利用上面所学知识以及全等三角形的相关知识解决问题:(1)性质:互补三角形的面积相等如图②,已知△ABC与△DEF是互补三角形.求证:△ABC与△DEF的面积相等.证明:分别作△ABC与△DEF的边BC,EF上的高线,则∠AGC=∠DHE=90°.……(将剩余证明过程补充完整)(2)互补三角形一定不全等,请你判断该说法是否正确,并说明理由,如果不正确,请举出一个反例,画出示意图.24.(8分)甲乙两地相距400千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地的路程y(千米)与所用时间x(小时)之间的函数关系,折线BCD表示轿车离甲地的路程y(千米)与x(小时)之间的函数关系,根据图象解答下列问题:(1)求线段CD对应的函数关系式;(2)在轿车追上货车后到到达乙地前,何时轿车在货车前30千米.25.(10分)解方程:(1);(2).26.(10分)如图,已知点在线段上,分别以,为边长在上方作正方形,,点为中点,连接,,,设,.(1)若,请判断的形状,并说明理由;(2)请用含,的式子表示的面积;(3)若的面积为6,,求的长.
参考答案一、选择题(每小题3分,共30分)1、B【分析】先求出平移后的解析式,继而令y=0,可得关于x的方程,解方程即可求得答案.【题目详解】根据函数图象平移规律,可知向上平移6个单位后得函数解析式应为,此时与轴相交,则,∴,即,∴点坐标为(-2,0),故选B.【题目点拨】本题考查了一次函数图象的平移,一次函数图象与坐标轴的交点坐标,先出平移后的解析式是解题的关键.2、C【解题分析】∵2<<3,∴3<+1<4,∴+1在在3和4之间.故选C.3、A【分析】连接AM,根据等腰三角形三线合一的性质得到AM⊥BC,根据勾股定理求得AM的长,再根据在直角三角形的面积公式即可求得MN的长.【题目详解】解:连接AM,
∵AB=AC,点M为BC中点,
∴AM⊥CM(三线合一),BM=CM,
∵AB=AC=5,BC=6,
∴BM=CM=3,
在Rt△ABM中,AB=5,BM=3,∴根据勾股定理得:AM===4,
又S△AMC=MN•AC=AM•MC,∴MN==.
故选A.【题目点拨】综合运用等腰三角形的三线合一,勾股定理.特别注意结论:直角三角形斜边上的高等于两条直角边的乘积除以斜边.4、C【解题分析】由三角形内角和定理得∠ABC+∠ACB=120°,由角平分线的性质得∠CBE+∠BCD=60°,再利用三角形的内角和定理得结果.解:∵∠A=60°,∴∠ABC+∠ACB=120°,∵BE,CD是∠B、∠C的平分线,∴∠CBE=∠ABC,∠BCD=∠BCA,∴∠CBE+∠BCD=(∠ABC+∠BCA)=60°,∴∠BFC=180°﹣60°=120°,故选C.5、A【解题分析】分析:设原计划每天施工x米,则实际每天施工(x+30)米,根据:原计划所用时间﹣实际所用时间=2,列出方程即可.详解:设原计划每天施工x米,则实际每天施工(x+30)米,根据题意,可列方程:=2,故选A.点睛:本题考查了由实际问题抽象出分式方程,关键是读懂题意,找出合适的等量关系,列出方程.6、B【分析】过P点作PE⊥BP,垂足为P,交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可证明三角形PBC的面积.【题目详解】解:过P点作PE⊥BP,垂足为P,交BC于E,∵AP垂直∠B的平分线BP于P,∠ABP=∠EBP,又知BP=BP,∠APB=∠BPE=90°,∴△ABP≌△BEP,∴AP=PE,∵△APC和△CPE等底同高,∴S△APC=S△PCE,∴三角形PBC的面积=三角形ABC的面积=cm1,选项中只有B的长方形面积为cm1,故选B.7、D【分析】根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【题目详解】解:∵分式有意义,∴x+1≠0,
解得x≠-1.
故选:D.【题目点拨】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.8、D【解题分析】根据轴对称图形与中心对称图形的概念求解.【题目详解】解:A、不是轴对称图形,是中心对称图形,不符合题意;
B、不是轴对称图形,是中心对称图形,不符合题意;
C、不是轴对称图形,是中心对称图形,不符合题意;
D、是轴对称图形,符合题意.
故选D.【题目点拨】本题考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.9、A【分析】根据等边三角形的性质、全等三角形的判定与性质对各结论逐项分析即可判定.【题目详解】解:①∵△ABC和△CDE为等边三角形。∴AC=BC,CD=CE,∠BCA=∠DCE=60°∴∠ACD=∠BCE在△ACD和△BCE中,AC=BC,∠ACD=∠BCE,CD=CE∴△ACD≌△BCE(SAS)∴AD=BE,∠ADC=∠BEC,则①正确;②∵∠ACB=∠DCE=60°∴∠BCD=60°∴△DCE是等边三角形∴∠EDC=60°=∠BCD∴BC//DE∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,②正确;③∵∠DCP=60°=∠ECQ在△CDP和△CEQ中,∠ADC=∠BEC,CD=CE,∠DCP=∠ECQ∴△CDP≌△CEQ(ASA)∴CР=CQ∴∠CPQ=∠CQP=60°,∴△PC2是等边三角形,③正确;④∠CPQ=∠CQP=60°∴∠QPC=∠BCA∴PQ//AE,④正确;⑤同④得△ACP≌△BCQ(ASA)∴AP=BQ,⑤正确.故答案为A.【题目点拨】本题主要考查了等边三角形的性质、全等三角形的判定与性质等知识点,熟练掌握全等三角形的判定与性质是解答本题的关键.10、B【分析】估算确定出m的范围即可.【题目详解】解:m=∵1<3<4,∴1<<2,即3<2+<4,则m的范围为3<m<4,故选:B.【题目点拨】本题主要考查无理数的估算,掌握估算的方法是解题的关键.二、填空题(每小题3分,共24分)11、【分析】根据零指数幂和负整数指数幂分别化简,再相乘.【题目详解】解:,故答案为:.【题目点拨】本题考查了有理数的乘法运算,涉及到零指数幂和负整数指数幂,解题的关键是掌握零指数幂和负整数指数幂的计算方法.12、①③④⑤【分析】根据三角形中线的定义可得BD=CD,根据等底等高的三角形的面积相等判断出①正确;利用“SAS”证明③△BDF≌△CDE正确,根据全等三角形对应边相等,证明⑤正确,根据全等三角形对应角相等得∠F=∠DEF,再根据内错角相等,两直线平行可得④正确.【题目详解】解:由题意得BD=CD,点A到BD,CD的距离相等∴△ABD和△ACD的面积相等,故①正确;虽然已知AD为△ABC的中线,但是推不出来∠BAD和∠CAD一定相等,故②不正确;在△BDF和△CDE中,∴△BDF≌△CDE,故③正确;∴CE=BF,故⑤正确;∴∠F=∠DEF∴BF∥CE,故④正确;故答案为①③④⑤.【题目点拨】本题考查了全等三角形的判定与性质,等底等高的三角形面积相等,熟练掌握三角形判定的方法并准确识图是解题的关键.全等三角形的判定:SSS;SAS;ASA;AAS;H.L;全等三角形的性质:全等三角形对应边相等,对应角相等.13、64°【解题分析】解:∵∠A=52°,∴∠ABC+∠ACB=128°.∵BD和CE是△ABC的两条角平分线,∴∠1=∠ABC,∠2=∠ACB,∴∠1+∠2=(∠ABC+∠ACB)=64°.故答案为64°.点睛:本题考查的是三角形内角和定理、角平分线的定义,掌握三角形内角和等于180°是解题的关键.14、20°或40°或70°或100°【题目详解】解:在Rt△ABC中,∠C=90°,∠A=40°,分四种情况讨论:①当AB=BP1时,∠BAP1=∠BP1A=40°;②当AB=AP3时,∠ABP3=∠AP3B=∠BAC=×40°=20°;③当AB=AP4时,∠ABP4=∠AP4B=×(180°﹣40°)=70°;④当AP2=BP2时,∠BAP2=∠ABP2,∴∠AP2B=180°﹣40°×2=100°;综上所述:∴∠APB的度数为:20°、40°、70°、100°.故答案为20°或40°或70°或100°.15、(5,9).【分析】根据用(2,15)表示2排15号可知第一个数表示排,第二个数表示号,进而可得答案.【题目详解】解:5排9号可以表示为(5,9),故答案为:(5,9).【题目点拨】本题考查了用有序数对确定位置,一对有顺序的数叫做有序数对,理解有序数对是两个有顺序的数是解题的关键.16、1.【分析】先把方程左边的代数式进行配方,再根据偶数次幂的非负性,即可求解.【题目详解】∵x1+y1+z1-1x+4y-6z+14=0,∴x1-1x+1+y1+4y+4+z1-6z+9=0,∴(x-1)1+(y+1)1+(z-3)1=0,∴x-1=0,y+1=0,z-3=0,∴x=1,y=-1,z=3,∴x+y+z=1-1+3=1.故答案为:1.【题目点拨】本题主要考查完全平方公式的应用以及偶数次幂的非负性,熟练掌握完全平方公式,是解题的关键.17、140°【分析】n边形的内角和是(n−2)•180°,少计算了一个内角,结果得2020°,则内角和是(n−2)•180°与2020°的差一定小于180度,并且大于0度.因而可以解方程(n−2)•180°≥2020°,多边形的边数n一定是最小的整数值,从而求出多边形的边数,内角和,进而求出少计算的内角.【题目详解】设多边形的边数是n,依题意有(n−2)•180°≥2020°,解得:n≥,则多边形的边数n=14;多边形的内角和是(14−2)•180=2160°;则未计算的内角的大小为2160°−2020°=140°.故答案为:140°.【题目点拨】本题主要考查了多边形的内角和定理,正确确定多边形的边数是解题的关键.18、①④【分析】设桌子高度为xcm,每本字典的厚度为ycm,根据题意列方程组求得x、y的值,再逐一判断即可.【题目详解】解:设桌子高度为xcm,每本字典的厚度为ycm,根据题意,
,解得:,
则每本字典的厚度为5cm,故①正确;
桌子的高度为1cm,故②错误;
把11本字典叠成一摞,整齐地放在这张桌面上,字典的离地高度为:1+11×5=140cm,故③错误;
若有x本字典叠成一摞放在这张桌面上,字典的离地高度y=5x+1,故④正确;
故答案为:①④.【题目点拨】本题主要考查了二元一次方程组和一次函数的应用能力,解题的关键是根据题意列方程组求得桌子高度和每本字典厚度.三、解答题(共66分)19、(1)甲将得第一名;(2)乙将得第一名.【分析】(1)先根据平均数计算各人的平均分,再比较即可;(2)按照权重为3:6:1的比例计算各人的测试成绩,再进行比较.【题目详解】解:(1)甲的平均成绩为(72+62+88)=74分乙的平均成绩为(85+77+45)=69分丙的平均成绩为(67+76+67)=70分因此甲将得第一名.(2)甲的平均成绩为=67.6分乙的平均成绩为=76.2分丙的平均成绩为=72.4分因此乙将得第一名.【题目点拨】本题考查了算术平均数和加权平均数的计算,掌握公式正确计算是解题关键.20、(1)A(0,4),B(-3,0);(2)①当点P在线段BC上时,;②当点P在线段BC延长线上时,【分析】(1)将代数式化简,利用非负性质求出a、b的值即可求出A、B的坐标.(2)先求出C点坐标,过点P作PM⊥y轴,用t表示PM的长度,分别讨论P在BC上和P在BC延长线上的情况.【题目详解】解:(1)∵ǀa-4|+b2+6b+9=0,∴a-4=0,b2+6b+9=(b+3)2=0,∴a=4,b=-3,∴A(0,4),B(-3,0).(2)由折叠可知C(0,-4),∠BCO=∠BAO=30°,∴OB=3,OC=4,过点P作PM⊥y轴,垂足为M,∴.①当点P在线段BC上时:.②当点P在线段BC延长线上时:.【题目点拨】本题考查线段动点问题,关键在于结合图形,分类讨论.21、(1)详见解析;(2)【分析】(1)根据三角形的中位线的性质得出DE∥BC,再根据已知CF∥AB即可得到结论;
(2)根据等腰三角形的性质三线合一得出,然后利用勾股定理即可得到结论.【题目详解】(1)证明:∵点D,E分别是边AB,AC的中点,
∴DE∥BC.
∵CF∥AB,
∴四边形BCFD是平行四边形;
(2)解:∵AB=BC,E为AC的中点,
∴BE⊥AC.
∴∵AB=2DB=4,BE=3,【题目点拨】本题考查了平行四边形的判定和性质,三角形中位线定理,勾股定理,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22、(1)见解析;(2)见解析【分析】(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可求出△ADE≌△FCE;
(2)由(1)知△ADE≌△FCE,得到AE=EF,AD=CF,由于AB=BC+AD,等量代换得到AB=BC+CF,即AB=BF,证得△ABE≌△FBE,即可得到结论.【题目详解】证明:(1)∵AD∥BC(已知),∴∠ADC=∠ECF(两直线平行,内错角相等),∵E是CD的中点(已知),∴DE=EC(中点的定义).∵在△ADE与△FCE中,,∴△ADE≌△FCE(ASA);(2)由(1)知△ADE≌△FCE,∴AE=EF,AD=CF,∵AB=BC+AD,∴AB=BC+CF,即AB=BF,在△ABE与△FBE中,,∴△ABE≌△FBE(SSS),∴∠AEB=∠FEB=90°,∴BE⊥AF.【题目点拨】主要考查了平行线的性质,全等三角形的判定与性质,等腰三角形的“三线合一”的性质.23、(1)见解析;(2)不正确,理由见解析【分析】(1)已知△ABC与△DEF是互补三角形,可得∠ACB+∠E=180°,AC=DE,BC=EF,证得∠ACG=∠E,证明△AGC≌△DHE,得到AG=DH,所以,即△ABC与△DEF的面积相等.(2)不正确.先画出反例图,证明△ABC≌△DEF,△ABC与△DEF是互补三角形.互补三角形一定不全等的说法错误.【题目详解】(1)∵△ABC与△DEF是互补三角形,∴∠ACB+∠E=180°,AC=DE,BC=EF.又∵∠ACB+∠ACG=180°,∴∠ACG=∠E,在△AGC与△DHE中,∴△AGC≌△DHE(AAS)∴AG=DH.∴即△ABC与△DEF的面积相等.(2)不正确.反例如解图,在△ABC和△DEF中,∴△ABC≌△DEF(SAS),∴△ABC与△DEF是互补三角形.∴互补三角形一定不全等的说法错误.【题目点拨】本题考查了全等三角形的判定及性质定理,利用AAS和SAS证明三角形全等,已知两个
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 托儿所服务的亲子关怀考核试卷
- 煤炭行业的全球化竞争与合作方式考核试卷
- 衡阳课件效果教学课件
- DB11T 934-2012 儿童福利机构婴幼儿早期发展干预技术规范
- DB11∕T 1812-2020 既有玻璃幕墙安全性检测与鉴定技术规程
- 孔雀妆课件教学课件
- 服装店铺新员工培训计划方案
- 走进丽江课件教学课件
- 淮阴工学院《建筑工程概预算》2022-2023学年第一学期期末试卷
- 淮阴工学院《机械设计基础》2022-2023学年第一学期期末试卷
- 内分泌科利用PDCA循环提高全院胰岛素存放的合格率品管圈QCC成果汇报
- 犹太律法613条具体条款
- 《HSK标准教程3》第10课
- 体育教育与中小学生身心健康的关系研究
- 商场电缆施工方案
- 2023中国职业教育行业发展趋势报告-多鲸教育研究院
- 《中国老年骨质疏松症诊疗指南(2023)》解读-
- “双减”背景下小学英语课后作业设计实践探究 论文
- 广东省佛山市顺德区部分学校2023-2024学年四年级上学期期中语文试卷
- 南方航空空乘招聘报名表
- 灭火器充装检修方案范本
评论
0/150
提交评论