吉林省吉林市第12中学2024届数学八上期末学业质量监测模拟试题含解析_第1页
吉林省吉林市第12中学2024届数学八上期末学业质量监测模拟试题含解析_第2页
吉林省吉林市第12中学2024届数学八上期末学业质量监测模拟试题含解析_第3页
吉林省吉林市第12中学2024届数学八上期末学业质量监测模拟试题含解析_第4页
吉林省吉林市第12中学2024届数学八上期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省吉林市第12中学2024届数学八上期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.已知点都在函数的图象上,下列对于的关系判断正确的是()A. B. C. D.2.如图,,,三点在同一条直线上,,,添加下列条件,不能判定的是()A. B. C. D.3.下列运算正确的是()A. B. C.α8α4=α2 D.4.2019年被称为中国的5G元年,如果运用5G技术,下载一个2.4M的短视频大约只需要0.000048秒,将数字0.000048用科学记数法表示应为()A.0.48×10﹣4 B.4.8×10﹣5 C.4.8×10﹣4 D.48×10﹣65.下列计算正确的是()A.()﹣2=b4 B.(﹣a2)﹣2=a4C.00=1 D.(﹣)﹣2=﹣46.如图,△ABC的∠B的外角的平分线BD与∠C的外角的平分线CE相交于点P,若点P到直线AC的距离为4,则点P到直线AB的距离为()A.4 B.3 C.2 D.17.若使分式有意义,则的取值范围是()A. B. C. D.8.11名同学参加数学竞赛初赛,他们的等分互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的()A.平均数B.中位数C.众数D.方差9.如图,中,为线段AB的垂直平分线,交于点E,交于D,连接,若,则的长为()A.6 B.3 C.4 D.210.已知为的内角所对应的边,满足下列条件的三角形不是直角三角形的是()A. B.C. D.二、填空题(每小题3分,共24分)11.把厚度相同的字典整齐地叠放在桌面上,已知字典的离地高度与字典本数成一次函数,根据图中所示的信息,给出下列结论:①每本字典的厚度为5cm;②桌子高为90cm;③把11本字典叠成一摞,整齐地放在这张桌面上,字典的离地高度为205cm;④若有x本字典叠成一摞放在这张桌面上,字典的离地高度为y(cm),则y=5x+1.其中说法正确的有________.12.如图,在中,,,的垂直平分线分别交,于点,,则______.13.如图,在等边三角形ABC中,点D在边AB上,点E在边AC上,将△ADE折叠,使点A落在BC边上的点F处,则∠BDF+∠CEF=_____.14.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1=_____.15.如果直角三角形的一个内角为40°,则这个直角三角形的另一个锐角为_____.16.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b,若ab=8,大正方形的面积为25,则小正方形的边长为_____.17.若的乘积中不含的一次项,则常数_________.18._______三、解答题(共66分)19.(10分)如图,等腰中,,,点、分别在边、的延长线上,,过点作于点,交于点.(1)若,求的度数;(2)若.求证:.20.(6分)如图,在中,,,,平分交于,求的度数.21.(6分)某公司开发的960件新产品必须加工后才能投放市场,现有甲、乙两个工厂都想加工这批产品,已知甲工厂单独加工48件产品的时间与乙工厂单独加工72件产品的时间相等,而且乙工厂每天比甲工厂多加工8件产品,在加工过程中,公司需每天支付50元劳务费请工程师到厂进行技术指导.(1)甲、乙两个工厂每天各能加工多少件产品?(2)该公司要选择既省时又省钱的工厂加工产品,乙工厂预计甲工厂将向公司报加工费用为每天800元,请问:乙工厂向公司报加工费用每天最多为多少元时,有望加工这批产品?22.(8分)如图,在△ABC中,AB=AC,∠A=36°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求与作法);(2)在(1)的条件下,求∠BDC的度数.23.(8分)如图,已知直线AB与CD相交于点O,OE平分∠BOD,OE⊥OF,且∠AOC=40°,求∠COF的度数.24.(8分)如图,、两个村子在笔直河岸的同侧,、两村到河岸的距离分别为,,,现在要在河岸上建一水厂向、两村输送自来水,要求、两村到水厂的距离相等.(1)在图中作出水厂的位置(要求:尺规作图,不写作法,保留作图痕迹);(2)求水厂距离处多远?25.(10分)实数在数轴上的位置如图所示,且,化简26.(10分)如图所示,在正方形网格中,若点的坐标是,点的坐标是,按要求解答下列问题:(1)在图中建立正确的平面直角坐标系,写出点C的坐标.(2)在图中作出△ABC关于x轴对称的△A1B1C1.

参考答案一、选择题(每小题3分,共30分)1、A【分析】根据题意将A,B两点代入一次函数解析式化简得到的关系式即可得解.【题目详解】将点代入得:,解得:,则,解得:,故选:A.【题目点拨】本题主要考查了一次函数图像上点坐标的求解及整式的化简,熟练掌握一次函数点的求法及整式的计算法则是解决本题的关键.2、D【分析】根据全等三角形的判定的方法,即可得到答案.【题目详解】解:∵,,A、,满足HL的条件,能证明全等;B、,得到,满足ASA,能证明全等;C、,得到,满足SAS,能证明全等;D、不满足证明三角形全等的条件,故D不能证明全等;故选:D.【题目点拨】本题考查了全等三角形的判定,解题的关键是熟练掌握证明三角形全等的几种方法.3、D【分析】结合同底数幂的除法、同底数幂的乘法和幂的乘方与积的乘方的概念和运算法则进行求解即可.【题目详解】解:A.两项不是同类项,不能合并,错误;B.,错误;C.,错误;D.,正确【题目点拨】本题考查了同底数幂的除法、同底数幂的乘法和幂的乘方与积的乘方的知识,解答本题的关键在于熟练掌握各知识点的概念和运算法则.4、B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:将数字0.000048用科学记数法表示应为4.8×10﹣1.故选:B.【题目点拨】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5、A【分析】直接利用分式的基本性质、负整数指数幂的性质、零指数幂化简得出答案.【题目详解】A、,此项正确B、,此项错误C、,此项错误D、,此项错误故选:A.【题目点拨】本题考查了分式的基本性质、负整数指数幂的性质、零指数幂,熟记各性质与运算法则是解题关键.6、A【分析】过P作PQ⊥AC于Q,PW⊥BC于W,PR⊥AB于R,根据角平分线性质得出PQ=PR,即可得出答案.【题目详解】过P作PQ⊥AC于Q,PW⊥BC于W,PR⊥AB于R,∵△ABC的∠B的外角的平分线BD与∠C的外角的平分线CE相交于点P,∴PQ=PW,PW=PR,

∴PR=PQ,

∵点P到AC的距离为4,

∴PQ=PR=4,

则点P到AB的距离为4,

故选A.【题目点拨】本题考查了角平分线性质的应用,能灵活运用性质进行推理是解此题的关键,注意:角平分线上的点到角两边的距离相等.7、B【解题分析】根据分式有意义的条件是分母不等于零求解.【题目详解】解:由题意得,,解得,,故选:B.【题目点拨】本题主要考查的是分式有意义的条件,熟练掌握分式有意义的条件是解题的关键.8、B【解题分析】试题分析:由于总共有11个人,且他们的分数互不相同,第6的成绩是中位数,要判断是否进入前6名,知道中位数即可.故答案选B.考点:中位数.9、B【分析】利用垂直平分线的性质得到AD=BD=6,∠A=∠ABD=30°,再根据∠C=90°得到∠CBD=30°,从而根据30°所对的直角边是斜边的一半得到结果.【题目详解】解:∵DE垂直平分AB,∴AD=BD=6,∠A=∠ABD=30°,∵∠C=90°,∴∠CBD=∠ABC-∠ABD=30°,∴CD=BD=3,故选B.【题目点拨】本题考查了垂直平分线的性质,含30°角的直角三角形的性质,解题的关键是熟练掌握含30°角的直角三角形的性质,即在直角三角形中,30°角所对的直角边等于斜边的一半.10、C【分析】运用直角三角形的判定方法:当一个角是直角时,或两边的平方和等于第三条边的平方,也可得出它是直角三角形.分别判定即可.【题目详解】A、∵,∴,即,∴△ABC是直角三角形,故本选项符合题意;B、∵,∴∴a2+b2=c2,∴△ABC是直角三角形,故本选项不符合题意;C、∵∠A:∠B:∠C=5:4:3,又∵∠A+∠B+∠C=180°,∴最大角∠A=75°,∴△ABC不是直角三角形,故本选项符合题意;D、∵a=c,b=c,(c)2+(c)2=c2,∴a2+b2=c2,∴△ABC是直角三角形,故本选项不符合题意.故选:C.【题目点拨】此题主要考查了勾股定理的逆定理、直角三角形的判定方法,灵活的应用此定理是解决问题的关键.二、填空题(每小题3分,共24分)11、①④【分析】设桌子高度为xcm,每本字典的厚度为ycm,根据题意列方程组求得x、y的值,再逐一判断即可.【题目详解】解:设桌子高度为xcm,每本字典的厚度为ycm,根据题意,

,解得:,

则每本字典的厚度为5cm,故①正确;

桌子的高度为1cm,故②错误;

把11本字典叠成一摞,整齐地放在这张桌面上,字典的离地高度为:1+11×5=140cm,故③错误;

若有x本字典叠成一摞放在这张桌面上,字典的离地高度y=5x+1,故④正确;

故答案为:①④.【题目点拨】本题主要考查了二元一次方程组和一次函数的应用能力,解题的关键是根据题意列方程组求得桌子高度和每本字典厚度.12、40°【分析】根据等腰三角形的性质得出∠B=∠C=40°,再根据垂直平分线的性质解答即可.【题目详解】解:∵在中,,∴,又∵的垂直平分线分别交,于点,,∴AE=BE,∴∠BAE=∠B=40°,故答案为:40°.【题目点拨】本题考查了等腰三角形的性质及垂直平分线的性质,灵活运用上述性质进行推导是解题的关键.13、120°【分析】由等边三角形的性质证得∠ADE+∠AED=120º,根据折叠性质及平角定义即可得出结论.【题目详解】∵三角形ABC是等边三角形,∴∠A=60º,∴∠ADE+∠AED=180º-60º=120º,由折叠性质得:∠ADE=∠EDF,∠AED=∠DEF,∴∠BDF+∠CEF=(180º-2∠ADE)+(180º-2∠AED)=360º-2(∠ADE+∠AED)=360º-240º=120º,故答案为:120º.【题目点拨】本题考查等边三角形的性质、三角形的内角和定理、折叠性质、平角定义,熟练掌握等边三角形的性质和折叠性质是解答的关键.14、【题目详解】试题分析:如图,过E作EF∥AB,根据平行于同一直线的两直线互相平行,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC=44°,∠BAE=∠FEA,求出∠BAE=90°-44°=46°,即可求出∠1=180°-46°=134°.15、50°【分析】根据直角三角形两锐角互余进行求解即可.【题目详解】∵直角三角形的一个内角为40°,∴这个直角三角形的另一个锐角=90°﹣40°=50°,故答案为50°.【题目点拨】本题考查了直角三角形两锐角互余的性质,熟练掌握是解题的关键.16、3【分析】由题意可知:中间小正方形的边长为:a-b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【题目详解】由题意可知:中间小正方形的边长为:a-b,∵每一个直角三角形的面积为:ab=×8=4,∴4×ab+(a-b)2=25,∴(a−b)2=25-16=9,∴a-b=3,故答案为3.【题目点拨】本题考查了勾股定理的证明,熟练掌握该知识点是本题解题的关键.17、1【分析】直接利用多项式乘法去括号,进而得出一次项系数为0,求解即可.【题目详解】∵的乘积中不含的一次项,∴=中∴故答案为:1.【题目点拨】本题主要考查了多项式乘多项式,解答本题的关键在于正确去括号并计算.18、【分析】根据幂的运算法则即可求解.【题目详解】故答案为:.【题目点拨】此题主要考查幂的运算,解题的关键是熟知幂的运算法则.三、解答题(共66分)19、(1);(2)见解析【分析】(1)在△CDE中根据等腰三角形的性质和三角形内角和定理得到∠ECD的度数.在△ACD中,根据三角形外角的性质即可得出结论;(2)在△CDE中,根据等腰三角形的性质得到∠ECD=∠CED,进而得到∠ECD+∠CDB=90°.由∠ECD+∠DCB=90°,得到∠DCB=∠BDC.由∠DCB+∠BDC=∠ABC=45°,得到∠DCB=∠BDC=22.5°,得到∠ECD=∠CED=67.5°,得到∠EDC=45°.由EF⊥DC于点F,得到∠DEF=∠EDC=45°,即有EF=DF,∠EDG=∠EGD=67.5°,根据等角对等边得到EG=ED,等量代换得到EG=DC,即可得到结论.【题目详解】∵等腰中,,,∴.又∵CD=DE,,∴,∴;(2)∵CD=DE,∴.又∵,∴.∵,∴.∵,∴,∴,∴.∵于点,∴,∴,,∴,∴,∴,∴.【题目点拨】本题考查了等腰三角形的判定与性质.灵活运用等腰三角形的性质及三角形外角的性质是解答本题的关键.20、15°【分析】首先根据三角形的外角的性质求得∠3,再根据已知条件求得∠2,进而根据三角形的内角和定理求得∠ABD,再根据角平分线的定义求得∠ABE,最后根据三角形的外角的性质求得∠1.【题目详解】解:∵∠1=∠3+∠C,∠1=100°,∠C=80°,

∴∠3=20°,

∵∠2=∠3,

∴∠2=10°,

∴∠ABC=180°-100°-10°=70°,

∵BE平分∠BAC,

∴∠ABE=35°,

∵∠1=∠2+∠ABE,

∴∠1=15°.【题目点拨】本题考查了角平分线定义、三角形内角和定理和三角形外角性质,能求出∠ABE的度数是解此题的关键.21、(1)甲工厂每天加工16件产品,则乙工厂每天加工24件;(2)乙工厂向公司报加工费用每天最多为1225元时,有望加工这批产品.【分析】(1)此题的等量关系为:乙工厂每天加工产品的件数=甲工厂每天加工产品的件数+8;甲工厂单独加工48件产品的时间=乙工厂单独加工72件产品的时间,设未知数,列方程求出方程的解即可;(2)先分别求出甲乙两工厂单独加工这批新产品所需时间,再求出甲工厂所需费用,然后根据乙工厂所需费用要小于甲工厂所需费用,设未知数,列不等式,再求出不等式的最大整数解即可.【题目详解】(1)设甲工厂每天加工x件产品,则乙工厂每天加工(x+8)件产品,根据题意得:,解得:x=16,检验:x(x+8)=16(16+8)≠0,∴x=16是原方程的解,∴x+8=16+8=24,答:甲工厂每天加工16件产品,则乙工厂每天加工24件.(2)解:甲工厂单独加工这批新产品所需时间为:960÷16=60,所需费用为:60×800+50×60=51000,乙工厂单独加工这批新产品所需时间为:960÷24=40,解:设乙工厂向公司报加工费用每天最多为y元时,有望加工这批产品则:40y+40×50≤51000解之y≤1225∴y的最大整数解为:y=1225答:乙工厂向公司报加工费用每天最多为1225元时,有望加工这批产品.【题目点拨】本题考查分式方程的应用,涉及到的公式:工作总量=工作效率×工作时间;分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.22、(1)见解析;(2)72°【分析】(1)直接利用角平分线的作法得出BD;(2)利用等腰三角形的性质以及角平分线的性质分析得出答案.【题目详解】(1)如图所示:BD即为所求;(2)∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD平分∠ABC,∴∠ABD=∠ABC=36°,∴∠BDC=∠A+∠ABD=72°.【题目点拨】此题主要考查角平分线的作图与角度求解,解题的关键是熟知等腰三角形的性质.23、110°【分析】通过对顶角性质得到∠BOD度数,再通过角平分线定义得到∠DOE的度数,通过垂直定义得到∠EOF的度数,再通过角的和差得到∠2的度数,最后通过邻补角性质即可得到∠COF的度数.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论