




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1页(共1页)2022年黑龙江省哈尔滨市中考数学试卷一、选择题(每小题3分,共计30分)1.(3分)的相反数是()A. B. C.6 D.﹣62.(3分)下列运算一定正确的是()A.(a2b3)2=a4b6 B.3b2+b2=4b4 C.(a4)2=a6 D.a3•a3=a93.(3分)下列图形中既是轴对称图形又是中心对称图形的是()A. B. C. D.4.(3分)七个大小相同的正方体搭成的几何体如图所示,其左视图是()A. B. C. D.5.(3分)抛物线y=2(x+9)2﹣3的顶点坐标是()A.(9,﹣3) B.(﹣9,﹣3) C.(9,3) D.(﹣9,3)6.(3分)方程=的解为()A.x=3 B.x=﹣9 C.x=9 D.x=﹣37.(3分)如图,AD,BC是⊙O的直径,点P在BC的延长线上,PA与⊙O相切于点A,连接BD,若∠P=40°,则∠ADB的度数为()A.65° B.60° C.50° D.25°8.(3分)某种商品原来每件售价为150元,经过连续两次降价后,该种商品每件售价为96元,设平均每次降价的百分率为x,根据题意,所列方程正确的是()A.150(1﹣x2)=96 B.150(1﹣x)=96 C.150(1﹣x)2=96 D.150(1﹣2x)=969.(3分)如图,AB∥CD,AC,BD相交于点E,AE=1,EC=2,DE=3,则BD的长为()A. B.4 C. D.610.(3分)一辆汽车油箱中剩余的油量y(L)与已行驶的路程x(km)的对应关系如图所示.如果这辆汽车每千米的耗油量相同,当油箱中剩余的油量为35L时,那么该汽车已行驶的路程为()A.150km B.165km C.125km D.350km二、填空题(每小题3分,共计30分)11.(3分)风能是一种清洁能源,我国风能储量很大,仅陆地上风能储量就有253000兆瓦,用科学记数法表示为兆瓦.12.(3分)在函数y=中,自变量x的取值范围是.13.(3分)计算+3的结果是.14.(3分)把多项式xy2﹣9x分解因式的结果是.15.(3分)不等式组的解集是.16.(3分)已知反比例函数y=﹣的图象经过点(4,a),则a的值为.17.(3分)在△ABC中,AD为边BC上的高,∠ABC=30°,∠CAD=20°,则∠BAC是度.18.(3分)同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是.19.(3分)一个扇形的面积为7πcm2,半径为6cm,则此扇形的圆心角是度.20.(3分)如图,菱形ABCD的对角线AC,BD相交于点O,点E在OB上,连接AE,点F为CD的中点,连接OF.若AE=BE,OE=3,OA=4,则线段OF的长为.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7分)先化简,再求代数式(﹣)÷的值,其中x=2cos45°+1.22.(7分)如图,方格纸中每个小正方形的边长均为1,△ABC的顶点和线段EF的端点均在小正方形的顶点上.(1)在方格纸中画出△ADC,使△ADC与△ABC关于直线AC对称(点D在小正方形的顶点上);(2)在方格纸中画出以线段EF为一边的平行四边形EFGH(点G,点H均在小正方形的顶点上),且平行四边形EFGH的面积为4,连接DH,请直接写出线段DH的长.23.(8分)民海中学开展以“我最喜欢的健身活动”为主题的调查活动,围绕“在跑步类、球类、武术类、操舞类四类健身活动中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢操舞类的学生人数占所调查人数的25%.请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若民海中学共有1600名学生,请你估计该中学最喜欢球类的学生共有多少名.24.(8分)已知矩形ABCD的对角线AC,BD相交于点O,点E是边AD上一点,连接BE,CE,OE,且BE=CE.(1)如图1,求证:△BEO≌△CEO;(2)如图2,设BE与AC相交于点F,CE与BD相交于点H,过点D作AC的平行线交BE的延长线于点G,在不添加任何辅助线的情况下,请直接写出图2中的四个三角形(△AEF除外),使写出的每个三角形的面积都与△AEF的面积相等.25.(10分)绍云中学计划为绘画小组购买某种品牌的A、B两种型号的颜料,若购买1盒A种型号的颜料和2盒B种型号的颜料需用56元;若购买2盒A种型号的颜料和1盒B种型号的颜料需用64元.(1)求每盒A种型号的颜料和每盒B种型号的颜料各多少元;(2)绍云中学决定购买以上两种型号的颜料共200盒,总费用不超过3920元,那么该中学最多可以购买多少盒A种型号的颜料?26.(10分)已知CH是⊙O的直径,点A、点B是⊙O上的两个点,连接OA,OB,点D,点E分别是半径OA,OB的中点,连接CD,CE,BH,且∠AOC=2∠CHB.(1)如图1,求证:∠ODC=∠OEC;(2)如图2,延长CE交BH于点F,若CD⊥OA,求证:FC=FH;(3)如图3,在(2)的条件下,点G是一点,连接AG,BG,HG,OF,若AG:BG=5:3,HG=2,求OF的长.27.(10分)在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+b经过点A(,),点B(,﹣),与y轴交于点C.(1)求a,b的值;(2)如图1,点D在该抛物线上,点D的横坐标为﹣2.过点D向y轴作垂线,垂足为点E.点P为y轴负半轴上的一个动点,连接DP,设点P的纵坐标为t,△DEP的面积为S,求S关于t的函数解析式(不要求写出自变量t的取值范围);(3)如图2,在(2)的条件下,连接OA,点F在OA上,过点F向y轴作垂线,垂足为点H,连接DF交y轴于点G,点G为DF的中点,过点A作y轴的平行线与过点P所作的x轴的平行线相交于点N,连接CN,PB,延长PB交AN于点M,点R在PM上,连接RN,若3CP=5GE,∠PMN+∠PDE=2∠CNR,求直线RN的解析式.
2022年黑龙江省哈尔滨市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.(3分)的相反数是()A. B. C.6 D.﹣6【解答】解:的相反数是﹣,故选:B.2.(3分)下列运算一定正确的是()A.(a2b3)2=a4b6 B.3b2+b2=4b4 C.(a4)2=a6 D.a3•a3=a9【解答】解:A、(a2b3)2=a4b6,原计算正确,故此选项符合题意;B、3b2+b2=4b2,原计算错误,故此选项不符合题意;C、(a4)2=a8,原计算错误,故此选项不符合题意;D、a3•a3=a6,原计算错误,故此选项不符合题意.故选:A.3.(3分)下列图形中既是轴对称图形又是中心对称图形的是()A. B. C. D.【解答】解:A.既不是中心对称图形,也不是轴对称图形,故此选项不合题意;B.既是中心对称图形,也是轴对称图形,故此选项符合题意;C.不是中心对称图形,是轴对称图形,故此选项不合题意;D.不是中心对称图形,是轴对称图形,故此选项不合题意;故选:B.4.(3分)七个大小相同的正方体搭成的几何体如图所示,其左视图是()A. B. C. D.【解答】解:由题意知,题中几何体的左视图为:故选:D.5.(3分)抛物线y=2(x+9)2﹣3的顶点坐标是()A.(9,﹣3) B.(﹣9,﹣3) C.(9,3) D.(﹣9,3)【解答】解:∵y=2(x+9)2﹣3,∴抛物线顶点坐标为(﹣9,﹣3),故选:B.6.(3分)方程=的解为()A.x=3 B.x=﹣9 C.x=9 D.x=﹣3【解答】解:=,2x=3(x﹣3),解得:x=9,检验:当x=9时,x(x﹣3)≠0,∴x=9是原方程的根,故选:C.7.(3分)如图,AD,BC是⊙O的直径,点P在BC的延长线上,PA与⊙O相切于点A,连接BD,若∠P=40°,则∠ADB的度数为()A.65° B.60° C.50° D.25°【解答】解:∵PA与⊙O相切于点A,∠P=40°,∴∠OAP=90°,∴∠BOD=∠AOP=90°﹣∠P=50°,∵OB=OD,∴∠ADB=∠OBD=(180°﹣∠BOD)÷2=(180°﹣50°)÷2=65°,故选:A.8.(3分)某种商品原来每件售价为150元,经过连续两次降价后,该种商品每件售价为96元,设平均每次降价的百分率为x,根据题意,所列方程正确的是()A.150(1﹣x2)=96 B.150(1﹣x)=96 C.150(1﹣x)2=96 D.150(1﹣2x)=96【解答】解:第一次降价后的价格为150×(1﹣x),两次连续降价后售价在第一次降价后的价格的基础上降低x,为150×(1﹣x)×(1﹣x),则列出的方程是150(1﹣x)2=96.故选:C.9.(3分)如图,AB∥CD,AC,BD相交于点E,AE=1,EC=2,DE=3,则BD的长为()A. B.4 C. D.6【解答】解:∵AB∥CD,∴△ABE∽△CDE,∴=,即=,∴BE=1.5,∴BD=BE+DE=4.5.故选:C.10.(3分)一辆汽车油箱中剩余的油量y(L)与已行驶的路程x(km)的对应关系如图所示.如果这辆汽车每千米的耗油量相同,当油箱中剩余的油量为35L时,那么该汽车已行驶的路程为()A.150km B.165km C.125km D.350km【解答】解:当油箱中剩余的油量为35L时,那么该汽车已行驶的路程为:(50﹣35)×(500÷50)=150(km),故选:A.二、填空题(每小题3分,共计30分)11.(3分)风能是一种清洁能源,我国风能储量很大,仅陆地上风能储量就有253000兆瓦,用科学记数法表示为2.53×105兆瓦.【解答】解:数字253000用科学记数法可表示为2.53×105.故答案为:2.53×105.12.(3分)在函数y=中,自变量x的取值范围是x≠﹣.【解答】解:由题意得:5x+3≠0,∴x≠﹣,故答案为:x≠﹣.13.(3分)计算+3的结果是2.【解答】解:原式=+3×==2.故答案为:2.14.(3分)把多项式xy2﹣9x分解因式的结果是x(y+3)(y﹣3).【解答】解:xy2﹣9x=x(y2﹣9)=x(y+3)(y﹣3),故答案为:x(y+3)(y﹣3).15.(3分)不等式组的解集是x>.【解答】解:解不等式3x+4≥0,得:x≥﹣,解不等式4﹣2x<﹣1,得:x>,则不等式组的解集为x>,故答案为:x>.16.(3分)已知反比例函数y=﹣的图象经过点(4,a),则a的值为﹣.【解答】解:点(4,a)代入反比例函数y=﹣得,a=﹣=﹣,故答案为:﹣.17.(3分)在△ABC中,AD为边BC上的高,∠ABC=30°,∠CAD=20°,则∠BAC是80或40度.【解答】解:当△ABC为锐角三角形时,如图,∠BAD=180°﹣∠B﹣∠ADB=180°﹣30°﹣90°=60°,∠BAC=∠BAD+∠CAD=60°+20°=80°;当△ABC为钝角三角形时,如图,∠BAD=180°﹣∠B﹣∠ADB=180°﹣30°﹣90°=60°,∠BAC=∠BAD﹣∠CAD=60°﹣20°=40°.综上所述,∠BAC=80°或40°.故答案为:80或40.18.(3分)同时抛掷两枚质地均匀的硬币,则一枚硬币正面向上、一枚硬币反面向上的概率是.【解答】解:画树状图如下:共有4种等可能的结果,其中一枚硬币正面向上、一枚硬币反面向上的结果有2种,∴一枚硬币正面向上、一枚硬币反面向上的概率为=,故答案为:.19.(3分)一个扇形的面积为7πcm2,半径为6cm,则此扇形的圆心角是70度.【解答】解:设扇形的圆心角为n°,则,∴n=70°,故答案为:70.20.(3分)如图,菱形ABCD的对角线AC,BD相交于点O,点E在OB上,连接AE,点F为CD的中点,连接OF.若AE=BE,OE=3,OA=4,则线段OF的长为2.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,AO=CO=4,BO=DO,∴AE===5,∴BE=AE=5,∴BO=8,∴BC===4,∵点F为CD的中点,BO=DO,∴OF=BC=2,故答案为:2.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7分)先化简,再求代数式(﹣)÷的值,其中x=2cos45°+1.【解答】解:(﹣)÷===,当x=2cos45°+1=2×+1=+1时,原式==.22.(7分)如图,方格纸中每个小正方形的边长均为1,△ABC的顶点和线段EF的端点均在小正方形的顶点上.(1)在方格纸中画出△ADC,使△ADC与△ABC关于直线AC对称(点D在小正方形的顶点上);(2)在方格纸中画出以线段EF为一边的平行四边形EFGH(点G,点H均在小正方形的顶点上),且平行四边形EFGH的面积为4,连接DH,请直接写出线段DH的长.【解答】解:(1)如图,△ADC即为所求;(2)如图,▱EFGH即为所求;由勾股定理得,DH==5.23.(8分)民海中学开展以“我最喜欢的健身活动”为主题的调查活动,围绕“在跑步类、球类、武术类、操舞类四类健身活动中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢操舞类的学生人数占所调查人数的25%.请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若民海中学共有1600名学生,请你估计该中学最喜欢球类的学生共有多少名.【解答】解:(1)20÷25%=80(名),答:一共抽取了80名学生;(2)80﹣16﹣24﹣20=20(名),补全条形统计图如下:(3)1600×=480(名),答:估计该中学最喜欢球类的学生共有480名.24.(8分)已知矩形ABCD的对角线AC,BD相交于点O,点E是边AD上一点,连接BE,CE,OE,且BE=CE.(1)如图1,求证:△BEO≌△CEO;(2)如图2,设BE与AC相交于点F,CE与BD相交于点H,过点D作AC的平行线交BE的延长线于点G,在不添加任何辅助线的情况下,请直接写出图2中的四个三角形(△AEF除外),使写出的每个三角形的面积都与△AEF的面积相等.【解答】(1)证明:∵四边形ABCD是矩形,∴OA=OC=AC,OB=OD=BD,AC=BD,∴OB=OC=OA=OD,∵BE=CE,OE=OE,∴△BEO≌△CEO(SSS);(2)解:△DHE,△CHO,△DEG,△BFO都与△AEF的面积相等,理由:∵四边形ABCD是矩形,∴∠BAD=∠CDA=90°AB∥CD,AB=DC,∵BE=CE,∴Rt△BAE≌Rt△CDE(HL),∴∠AEB=∠DEC,AE=DE,∵OA=OD,∴∠OEA=∠OED=90°,∴∠BAD=∠OED=90°,∠ADC=∠AEO=90°,∴AB∥OE,DC∥OE,∴△AEO的面积=△BEO的面积,△DEO的面积=△COE的面积,∴△AEO的面积﹣△EFO的面积=△BEO的面积﹣△EFO的面积,△DEO的面积﹣△EHO的面积=△COE的面积﹣△EHO的面积,∴△AEF的面积=△BFO的面积,△DHE的面积=△CHO的面积,∵OA=OD,∴∠DAO=∠ADO,∴△AEF≌△DEH(ASA),∴△AEF的面积=△DHE的面积=△CHO的面积,∵DG∥AC,∴∠G=∠AFE,∠GDE=∠FAE,∴△AEF≌△DEG(AAS),∴△AEF的面积=△DEG的面积,∴△DHE,△CHO,△DEG,△BFO都与△AEF的面积相等.25.(10分)绍云中学计划为绘画小组购买某种品牌的A、B两种型号的颜料,若购买1盒A种型号的颜料和2盒B种型号的颜料需用56元;若购买2盒A种型号的颜料和1盒B种型号的颜料需用64元.(1)求每盒A种型号的颜料和每盒B种型号的颜料各多少元;(2)绍云中学决定购买以上两种型号的颜料共200盒,总费用不超过3920元,那么该中学最多可以购买多少盒A种型号的颜料?【解答】解:(1)设每盒A种型号的颜料x元,每盒B种型号的颜料y元,依题意得:,解得:.答:每盒A种型号的颜料24元,每盒B种型号的颜料16元.(2)设该中学可以购买m盒A种型号的颜料,则可以购买(200﹣m)盒B种型号的颜料,依题意得:24m+16(200﹣m)≤3920,解得:m≤90.答:该中学最多可以购买90盒A种型号的颜料.26.(10分)已知CH是⊙O的直径,点A、点B是⊙O上的两个点,连接OA,OB,点D,点E分别是半径OA,OB的中点,连接CD,CE,BH,且∠AOC=2∠CHB.(1)如图1,求证:∠ODC=∠OEC;(2)如图2,延长CE交BH于点F,若CD⊥OA,求证:FC=FH;(3)如图3,在(2)的条件下,点G是一点,连接AG,BG,HG,OF,若AG:BG=5:3,HG=2,求OF的长.【解答】(1)证明:如图1,∵点D,点E分别是半径OA,OB的中点,∴OD=OA,OE=OB,∵OA=OB,∴OE=OD,∵∠AOC=2∠CHB,∠BOC=2∠CHB,∴∠AOC=∠BOC,∵OC=OC,∴△OCD≌△OCE(SAS),∴∠ODC=∠OEC;(2)证明:∵CD⊥OA,∴∠CDO=90°,由(1)知:∠ODC=∠OEC=90°,∴sin∠OCE==,∴∠OCE=30°,∴∠COE=60°,∵∠H=∠COE=30°,∴∠H=∠OCE,∴FC=FH;(3)解:∵CO=OH,FC=FH,∴FO⊥CH,∴∠FOH=90°,如图,连接AH,∵∠AOC=∠BOC=60°,∴∠AOH=∠BOH=120°,∴AH=BH,∠AGH=60°,∵AG:BG=5:3,∴设AG=5x,BG=3x,在AG上取点M,使得AM=BG,连接MH,过点H作HN⊥CM于N,∵∠HAM=∠HBG,∴△HAM≌△HBG(SAS),∴MH=GH,∴△MHG是等边三角形,∴MG=HG=2,∵AG=AM+MG,∴5x=3x+2,∴x=1,∴AG=5,BG=AM=3,∴MN=GM=×2=1,HN=,∴AN=MN+AM=4,∴HB=HA===,∵∠FOH=90°,∠OHF=30°,∴∠OFH=60°,∵OB=OH,∴∠BHO=∠OBH=30°,∴∠FOB=∠OBF=30°,∴OF=BF,在Rt△OFH中,∠OHF=30°,∴HF=2OF,∴HB=BF+HF=3OF=,∴OF=.27.(10分)在平面直角坐标系中,点O为坐标原点,抛物线y=ax2+b经过点A(,),点B(,﹣),与y轴交于点C.(1)求a,b的值;(2)如图1,点D在该抛物线上,点D的横坐标为﹣2.过点D向y轴作垂线,垂足为点E.点P为y轴负半轴上的一个动点,连接DP,设点P的纵坐标为t,△DEP的面积为S,求S关于t的函数解析式(不要求写出自变量t的取值范围);(3)如图2,在(2)的条件下,连接OA,点F在OA上,过点F向y轴作垂线,垂足为点H,连接DF交y轴于点G,点G为DF的中点,过点A作y轴的平行线与过点P所作的x轴的平行线相交于点N,连接CN,PB,延长PB交AN于点M,点R在PM上,连接RN,若3CP=5GE,∠PMN+∠PDE=2∠CNR,求直线RN的解析式.【解答】解:(1)∵抛物线y=ax2+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 一年质量工作总结
- 2024年计算机项目管理试题及答案
- 学期教育艺术鉴赏:儿童画
- 完善医院质量管理体系的工作计划
- 促进语言表达的系列活动计划
- 整合资源与搭建合作平台计划
- 合理分配资源的管理艺术计划
- 如何提升社区环境美化计划
- 2024年人力资源师考试回顾试题及答案
- 2024年投资咨询理论与实践试题及答案
- (3月省质检)福建省2025届高三毕业班适应性练习卷英语试卷(含答案)
- 秸秆破壁菌酶研发项目可行性研究报告(范文参考)
- 2025年上半年贵州黔东南州各县(市)事业单位招聘工作人员1691人笔试易考易错模拟试题(共500题)试卷后附参考答案
- 2025新疆机场(集团)有限责任公司阿克苏管理分公司第一季度招聘(75人)笔试参考题库附带答案详解
- 2025年阿斯利康能力测试题及答案
- 东莞市劳动合同模板6篇
- 《医疗机构重大事故隐患判定清单(试行)》知识培训
- TCACM 1470-2023 胃癌前病变治未病干预指南
- Unit 4 Eat Well(大单元教学设计)2024-2025学年七年级英语下册同步备课系列(人教版2024)
- 全国计算机等级考试《三级信息安全技术》专用教材【考纲分析+考点精讲+真题演练】
- 2024年天翼云认证运维工程师考试复习题库(含答案)
评论
0/150
提交评论