版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.2.3直线与平面平行的性质
教室内日光灯管所在直线与地面平行,如何在地面上作一条直线与灯管所在的直线平行?竖杆底端的连线与横杆是否平行?
平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.符号语言:直线与平面平行有哪些性质呢?直线与平面平行的判定定理:如果一条直线和一个平面平行,那么这条直线和这个平面内的直线有怎样的位置关系?
提示:平行或异面探究点1直线a∥平面α,平面α内有n条互相平行的直线,那么这n条直线和直线a()A.全平行B.全异面C.全平行或全异面D.不全平行或不全异面C如果直线a与平面α平行,那么经过直线a
的平面与平面α有几种位置关系?αaαa提示:平行或相交探究点2如果直线ɑ与平面α平行,经过直线ɑ的平面与平面α相交于直线b,那么直线ɑ,b的位置关系如何?αab已知:探究点3提示:平行求证:【即时训练】直线与平面平行的性质定理符号语言:
一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行.αabβ线面平行线线平行作用:①作平行线的方法;②判定直线与直线平行的重要依据.直线与平面平行的性质定理的认识关键:寻找平面与平面的交线.αabβ【提升总结】例1如图所示的一块木料中,棱BC平行于面A′C′.(1)要经过面A′C′内的一点P和棱BC将木料锯开,应怎样画线?(2)所画的线与平面AC是什么位置关系?分析:经过木料表面A′C′内的一点P和棱BC将木料锯开,实际上是经过BC及BC外一点P作截面,也就是找出平面与平面的交线.我们可以由直线与平面平行的性质定理和公理4、公理2作出.解:(1)在平面A′C′内,过点P作直线EF,使EF∥B′C′,并分别交棱A′B′,C′D′于点E,F.连接BE,CF,则EF,BE,CF就是应画的线.AA′CBDPD′B′C′EF因为棱BC∥平面A'C',平面BC'与平面A'C'交于B'C',所以BC∥B'C'.由(1)知,EF∥B'C',所以EF∥BC,因此
AA′CBDPD′B′C′(2)EFαBE,CF显然都与平面AC相交.在侧棱垂直于底面的四棱柱ABCD-A1B1C1D1中,AD∥BC,E是DD1的中点,F是平面B1C1E与直线AA1的交点.证明:EF∥A1D1.【变式练习】abα例2已知平面外的两条平行直线中的一条平行于这个平面,求证:另一条也平行于这个平面.如图,已知直线a,b,平面α,且a∥b,a∥α,a,b都在平面α外.求证:b∥α.c第一步:将原题改写成数学符号语言;第二步:分析,作辅助平面;β证明:过a作平面β,使它与平面α相交,交线为c.因为a∥α,a
β,α∩β=c,所以
a∥
c.
因为
a∥b,所以
b∥c.因为c
α,
b
α,所以
b∥α.abαc第三步:书写证明过程.β【变式练习】线线平行线面平行线面平行线线平行线面平行的判定定理线面平行的性质定理这种直线与平面的位置关系同直线与直线的位置关系的相互转化是立体几何的一种重要的思想方法.【提升总结】1.直线a∥平面α,α内有n条直线交于一点,那么这n条直线中与直线a平行的(
)A.至少有一条 B.至多有一条C.有且只有一条 D.没有B2.如图,在三棱锥S-ABC中,E,F分别是SB,SC上的点,且EF∥平面ABC,则(
)A.EF与BC相交B.EF∥BCC.EF与BC异面D.以上均有可能B3.如果一条直线和一个平面平行,则这条直线()A.只和这个平面内的一条直线平行B.只和这个平面内的两条相交直线不相交C.和这个平面内的任意直线都平行D.和这个平面内的任意直线都不相交D4.如果两个相交平面分别经过两条平行线中的一条,那么它们的交线和这两条平行线的位置关系是
.
【解析】设a,b是两平行线,α,β是两个相交平面,因为a∥b,b⊂β,所以a∥β.又因为a⊂α,α∩β=l,所以a∥l.又因为a∥b,所以b∥l,所以a∥b∥l.平行5.求证:如果过平面内一点的直线平行于与此平面平行的一条直线,那么这条直线在此平面内.已知:l∥α,点P∈α,P∈m且m∥l
求证:mααβ
m'm
P.l证明:设l与P确定的平面为β,且α∩β=m′∵l∥α,∴l∥m′.又l∥m,m∩m’=P.∴m′和m重合.∴mα6.(2015·济宁高一检测)如图,用平行于四面体A-BCD的一组对棱AB,CD的平面截此四面体.求证:截面MNPQ是平行四边形.典例中如何证明一个图形是平行四边形?提示:要证明一个图形是平行四边形,可以证明它的两组对边分别平行.【解题关键】【证明】因为AB∥平面MNPQ,平面ABC∩平面MNPQ=MN,且AB⊂平面ABC,所以由线面平行的性质定理,知AB∥MN.同理AB∥PQ,所以MN∥PQ.同理可得MQ∥NP.所以截面四边形MNPQ是平行四边形.【互动探究】将典例变为:如图所示,四边形ABCD是矩形,P∉平面ABCD,过BC作平面BCFE交AP于E,交DP于F.求证:四边形BCFE是梯形.【证明】因为四边形ABCD为矩形,所以BC∥AD,因为AD⊂平面PAD,BC⊄平面PAD,所以BC∥平面PAD.因为平面BCFE∩平面PAD=EF,所以BC∥EF.因为AD=BC,AD≠EF,所以BC≠EF,所以四边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度工业用地租赁合同详细协议
- 《铁路轨道》课件
- 2024中国电信天津公司招聘20人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国南方航空股份限公司海南分公司地服招实习生(70人)易考易错模拟试题(共500题)试卷后附参考答案
- 2024中国人寿保险股份限公司铜仁分公司招聘79人易考易错模拟试题(共500题)试卷后附参考答案
- 2024中交二航局校园招聘(昆明岗)易考易错模拟试题(共500题)试卷后附参考答案
- 2024年度文化传媒内容创作与发布合同
- 2024年度保温工程验收与评估合同
- 传染病的实验室检查课件
- 2024年度承包合同的承包标的与承包范围
- 早产临床防治指南(2024版)解读
- 伯克利-利特温(组织绩效与变革因果关系)组织诊断+模型案例、工具解析
- 学堂乐歌 说课课件-2023-2024学年高中音乐人音版(2019) 必修 音乐鉴赏
- VDA6.3-2023过程审核检查表
- 2024尔雅通识课《影视鉴赏》期末答案
- 危重患者的早期识别与管理
- 小学英语单元作业设计与实施探究
- 食材配送投标方案技术标
- 农村气代煤工程技术规程
- 护士延续注册体检表
- 手术的三方核查
评论
0/150
提交评论