浙江省宁波市李兴贵中学2024届八上数学期末学业质量监测模拟试题含解析_第1页
浙江省宁波市李兴贵中学2024届八上数学期末学业质量监测模拟试题含解析_第2页
浙江省宁波市李兴贵中学2024届八上数学期末学业质量监测模拟试题含解析_第3页
浙江省宁波市李兴贵中学2024届八上数学期末学业质量监测模拟试题含解析_第4页
浙江省宁波市李兴贵中学2024届八上数学期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省宁波市李兴贵中学2024届八上数学期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.已知a、b、c是三角形的三边长,若满足,则这个三角形的形状是()A.等腰三角形 B.等边三角形 C.锐角三角形 D.直角三角形2.如图,在△ABC中,AB=AC,AD、CE分别是△ABC的中线和角平分线,当∠ACE=35°时,∠BAD的度数是()A.55° B.40° C.35° D.20°3.如图,在下列四组条件中,不能判断的是()A.B.C.D.4.AD是△ABC中∠BAC的平分线,DE⊥AB于点E,DF⊥AC交AC于点F.S△ABC=7,DE=2,AB=4,则AC长是()A.4 B.3 C.6 D.25.下列长度的三条线段,能组成三角形的是()A.5,6,11 B.3,4,8 C.5,6,10 D.6,6,136.下列实数中的无理数是()A.﹣ B.π C.1.57 D.7.如图,AC、BD相交于点O,OA=OB,OC=OD,则图中全等三角形的对数是().A.1对 B.2对 C.3对 D.4对8.已知那么的值等于()A. B. C. D.9.如图,在等腰三角形ABC中,BA=BC,∠ABC=120°,D为AC边的中点,若BC=6,则BD的长为()A.3 B.4 C.6 D.810.丽丽同学在参加演讲比赛时,七位评委的评分如下表:她得分的众数是()评委代号评分A.分 B.分 C.分 D.分二、填空题(每小题3分,共24分)11.数学家发明了一个魔术盒,当任意数对(a,b)进入其中时,会得到一个新的数:(a﹣2)(b﹣1).现将数对(m,2)放入其中,得到数n,再将数对(n,m)放入其中后,最后得到的数是_____.(结果要化简)12.如图,已知,请你添加一个条件使__________.13.如图,将三角形纸片(△ABC)进行折叠,使得点B与点A重合,点C与点A重合,压平出现折痕DE,FG,其中D,F分别在边AB,AC上,E,G在边BC上,若∠B=25°,∠C=45°,则∠EAG的度数是_____°.14.计算(10xy2﹣15x2y)÷5xy的结果是_____.15.甲、乙两名男同学练习投掷实心球,每人投了10次,平均成绩均为7.5米,方差分别为,,成绩比较稳定的是__________(填“甲”或“乙”)16.如图,在△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE相交于点F,若BF=AC,则∠ABC=_____度.17.若等腰三角形的顶角为80°,则这个等腰三角形的底角为____度;18.如图,C、D点在BE上,∠1=∠2,BD=EC,请补充一个条件:____________,使△ABC≌△FED;三、解答题(共66分)19.(10分)如图是某台阶的一部分,并且每级台阶的宽等于高.请你在图中建立适当的坐标系,使点的坐标为,点的坐标为.(1)直接写出点,,的坐标;(2)如果台阶有级(第个点用表示),请你求出该台阶的高度和线段的长度.20.(6分)为做好食堂的服务工作,某学校食堂对学生最喜爱的菜肴进行了抽样调查,下面试根据收集的数据绘制的统计图(不完整):(1)参加抽样调查的学生数是______人,扇形统计图中“大排”部分的圆心角是______°;(2)把条形统计图补充完整;(3)若全校有3000名学生,请你根据以上数据估计最喜爱“烤肠”的学生人数.21.(6分)如图,点O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图(1),若∠AOC=,求∠DOE的度数;(2)如图(2),将∠COD绕顶点O旋转,且保持射线OC在直线AB上方,在整个旋转过程中,当∠AOC的度数是多少时,∠COE=2∠DOB.22.(8分)如图,在中,,为边上的点,且,为线段的中点,过点作,过点作,且、相交于点.(1)求证:(2)求证:23.(8分)阅读下列题目的解题过程:已知a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4(A)∴c2(a2﹣b2)=(a2+b2)(a2﹣b2)(B)∴c2=a2+b2(C)∴△ABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)错误的原因为:;(3)本题正确的结论为:.24.(8分)已知一次函数与(k≠0)的图象相交于点P(1,-6).(1)求一次函数的解析式;(2)若点Q(m,n)在函数的图象上,求2n-6m+9的值.25.(10分)某小区有两段长度相等的道路需硬化,现分别由甲、乙两个工程队同时开始施工.如图的线段和折线是两队前6天硬化的道路长y甲、y乙(米)与施工时间x(天)之间的函数图象根据图象解答下列问题:(1)直接写出y甲、y乙(米)与x(天)之间的函数关系式.①当0<x≤6时,y甲=;②当0<x≤2时,y乙=;当2<x≤6时,y乙=;(2)求图中点M的坐标,并说明M的横、纵坐标表示的实际意义;(3)施工过程中,甲队的施工速度始终不变,而乙队在施工6天后,每天的施工速度提高到120米/天,预计两队将同时完成任务.两队还需要多少天完成任务?26.(10分)为迎接“均衡教育大检查”,县委县府对通往某偏远学校的一段全长为1200米的道路进行了改造,铺设草油路面.铺设400米后,为了尽快完成道路改造,后来每天的工作效率比原计划提高25%,结果共用13天完成道路改造任务.(1)求原计划每天铺设路面多少米;(2)若承包商原来每天支付工人工资为1500元,提高工作效率后每天支付给工人的工资增长了20%,完成整个工程后承包商共支付工人工资多少元?

参考答案一、选择题(每小题3分,共30分)1、D【分析】首先根据绝对值,平方数与算术平方根的非负性,求出a,b,c的值,在根据勾股定理的逆定理判断其形状是直角三角形.【题目详解】∵(a-6)2≥0,≥0,|c-10|≥0,∴a-6=0,b-8=0,c-10=0,解得:a=6,b=8,c=10,∵62+82=36+64=100=102,∴是直角三角形.故选D.【题目点拨】本题主要考查了非负数的性质与勾股定理的逆定理,此类题目在考试中经常出现,是考试的重点.2、D【分析】根据角平分线的定义和等腰三角形的性质即可得到结论.【题目详解】∵CE是∠ACB的平分线,∠ACE=35°,∴∠ACB=2∠ACE=70°,∵AB=AC,∴∠B=∠ACB=70°,∵AD⊥BC,∴∠ADB=90°,∴∠BAD=90°﹣∠B=20°,故选D.【题目点拨】本题考查了等腰三角形的两个底角相等的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.3、C【分析】根据全等三角形的判定定理逐一判断即可.【题目详解】解:A.若,利用SSS可证,故本选项不符合题意;B.若,利用SAS可证,故本选项不符合题意;C.若,两边及其一边的对角对应相等不能判定两个三角形全等,故本选项符合题意;D.若,利用ASA可证,故本选项不符合题意.故选C.【题目点拨】此题考查的是判定全等三角形所需的条件,掌握全等三角形的各个判定定理是解决此题的关键.4、B【分析】首先由角平分线的性质可知DF=DE=2,然后由S△ABC=S△ABD+S△ACD及三角形的面积公式得出结果.【题目详解】解:AD是△ABC中∠BAC的平分线,∠EAD=∠FADDE⊥AB于点E,DF⊥AC交AC于点F,∴DF=DE,又∵S△ABC=S△ABD+S△ACD,DE=2,AB=4,∴AC=3.故答案为:B【题目点拨】本题主要考查了角平分线的性质,熟练掌握角平分线的性质、灵活运用所学知识是解题的关键.5、C【分析】根据三角形的两边和大于第三边解答.【题目详解】A、5+6=11,故不能构成三角形;B、3+4<8,故不能构成三角形;C、5+6>10,故能构成三角形;D、6+6<13,故不能构成三角形;故选:C.【题目点拨】此题考查三角形的三边关系,熟记三角形的任意两边之和大于第三边,两边之差小于第三边是解题的关键.6、B【分析】无限不循环小数是无理数,根据定义判断即可.【题目详解】解:A.﹣是分数,属于有理数;B.π是无理数;C.1.57是有限小数,即分数,属于有理数;D.是分数,属于有理数;故选:B.【题目点拨】此题考查无理数的定义,熟记定义并运用解题是关键.7、C【解题分析】试题分析:已知OA=OB,∠DOA=∠COB,OC=OD,即可得△OAD≌△OBC,所以∠ADB=∠BCA,AD=BC,再由OA=OB,OC=OD,易得AC=-BD,又因AB=BA,利用SSS即可判定△ABD≌△BAC,同理可证△ACD≌△BDC,故答案选C.考点:全等三角形的判定及性质.8、B【分析】由同底数幂的乘法的逆运算与幂的乘方的逆运算把变形后代入可得答案.【题目详解】解:,故选B.【题目点拨】本题考查的是同底数幂的逆运算与幂的乘方的逆运算,掌握逆运算的法则是解题的关键.9、A【分析】根据等腰三角形的性质三线合一可得直角三角形,再利用直角三角形的性质即可得到结论.【题目详解】解:∵BA=BC,∠ABC=120°,∴∠C=∠A=30°,∵D为AC边的中点,∴BD⊥AC,∵BC=6,∴BD=BC=3,故选:A.【题目点拨】本题考查了直角三角形的性质和等腰三角形的性质,熟练掌握等腰三角形与直角三角形的性质是解题的关键.10、B【分析】一组数据中出现次数最多的数据叫做众数.【题目详解】这组数据出现次数最多的是1,故这组数据的众数是1.故选:B.【题目点拨】本题考查了众数的定义,解题时牢记定义是关键.二、填空题(每小题3分,共24分)11、m2﹣5m+4【分析】魔术盒的变化为:数对进去后变成第一个数减2的差乘以第二个数减1的差的积.把各个数对放入魔术盒,计算结果即可.【题目详解】解:当数对(m,2)放入魔术盒,得到的新数n=(m﹣2)(2﹣1)=m﹣2,把数对(n,m)放入魔术盒,得到的新数为:(n﹣2)(m﹣1)=(m﹣2﹣2)(m﹣1)=(m﹣4)(m﹣1)=m2﹣5m+4故答案为:m2﹣5m+4【题目点拨】本题考查了整式的乘法,多项式乘多项式,即用第一个多项式的每一项乘第二个多项式的每一项,熟练掌握多项式乘多项式是解题的关键.12、AC=AE或∠ADE=∠ABC或∠C=∠E(答案不唯一)【分析】根据图形可知证明△ABC≌△ADE已经具备了一个公共角和一对相等边,因此可以利用ASA、SAS、AAS证明两三角形全等.【题目详解】解:∵∠A=∠A,AB=AD,

∴添加条件AC=AE,此时满足SAS;

添加条件∠ADE=∠ABC,此时满足ASA;

添加条件∠C=∠E,此时满足AAS,

故答案为:AC=AE或∠ADE=∠ABC或∠C=∠E(答案不唯一).【题目点拨】本题考查了全等三角形的判定,是一道开放题,解题的关键是牢记全等三角形的判定方法.13、40°【解题分析】依据三角形内角和定理,即可得到∠BAC的度数,再根据折叠的性质,即可得到∠BAE=∠B=25°,∠CAG=∠C=45°,进而得出∠EAG的度数.【题目详解】∵∠B=25°,∠C=45°,∴∠BAC=180°−25°−45°=110°,由折叠可得,∠BAE=∠B=25°,∠CAG=∠C=45°,∴∠EAG=110°−(25°+45°)=40°,故答案为:40°【题目点拨】此题考查三角形内角和定理,折叠的性质,解题关键在于得到∠BAC的度数14、2y﹣3x【分析】多项式除以单项式,多项式的每一项除以该单项式,然后运用同底数幂相除,底数不变,指数相减可得.【题目详解】解:(10xy2﹣15x2y)÷5xy=2y﹣3x.故答案为:2y﹣3x.【题目点拨】掌握整式的除法为本题的关键.15、乙【分析】根据方差的定义,方差越小数据越稳定即可得出答案.【题目详解】解:∵,,∴,∴成绩比较稳定的是乙;

故答案为:乙.【题目点拨】本题考查根据方差判断稳定性.方差能够反映所有数据的信息方差越大,数据波动越大,数据越不稳定;方差越小,数据波动越小,数据越稳定.只有当两组数据的平均数相等或接近时,才能用方差比较它们波动的大小.16、1【分析】根据三角形全等的判定和性质,先证△ADC≌△BDF,可得BD=AD,可求∠ABC=∠BAD=1°.【题目详解】∵AD⊥BC于D,BE⊥AC于E∴∠EAF+∠AFE=90°,∠DBF+∠BFD=90°,又∵∠BFD=∠AFE(对顶角相等)∴∠EAF=∠DBF,在Rt△ADC和Rt△BDF中,,∴△ADC≌△BDF(AAS),∴BD=AD,即∠ABC=∠BAD=1°.故答案为1.【题目点拨】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.17、50【分析】因为三角形的内角和是180度,又因为等腰三角形的两个底角相等,用“180-80=100”求出两个底角的度数,再用“100÷2”求出一个底角的度数;【题目详解】底角:(180°−80°)÷2=100°÷2=50°它的底角为50度故答案为:50.【题目点拨】此题考查三角形的内角和,等腰三角形的性质,解题关键在于利用内角和定理进行解答.18、AC=DF(或∠A=∠F或∠B=∠E)【解题分析】∵BD=CE,

∴BD-CD=CE-CD,

∴BC=DE,

①条件是AC=DF时,在△ABC和△FED中,∴△ABC≌△FED(SAS);②当∠A=∠F时,∴△ABC≌△FED(AAS);③当∠B=∠E时,∴△ABC≌△FED(ASA)故答案为AC=DF(或∠A=∠F或∠B=∠E).三、解答题(共66分)19、(1),,;(2)该台阶的高度是,的长度是【分析】(1)根据平面直角坐标系的定义建立,然后写出各点的坐标即可;(2)利用平移的性质求出横向与纵向的长度,然后求解即可.【题目详解】解:以点为坐标原点,水平方向为轴,建立平面直角坐标系,如图所示.(1),,;(2)点的坐标是,点的坐标是,每阶台阶的高为,宽也为.阶台阶的高为..所以,该台阶的高度是,的长度是.【题目点拨】本题考查了坐标与图形的性质确,主要利用了平面直角坐标系,从平移的角度考虑求解是解题的关键.20、(1)200,144;(2)答案见解析;(3)600【分析】(1)根据喜爱鸡腿的人数是50人,所占的百分比是25%即可求得调查的总人数;(2)利用调查的总人数减去其它组的人数即可求得喜爱烤肠的人数;(3)利用总人数3000乘以对应的比例即可求解.【题目详解】解:(1)参加调查的人数是:50÷25%=200(人),扇形统计图中“大排”部分的圆心角的度数是:360×=144°.故答案为200,144;(2)喜爱烤肠的人数是:200﹣80﹣50﹣30=40(人),补充条形统计图如下:(3)估计最喜爱“烤肠”的学生人数是:3000×=600(人).【题目点拨】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21、(1)20°;(2)当∠AOC的度数是60°或108°时,∠COE=2∠DOB【分析】(1)依据邻补角的定义以及角平分线的定义,即可得到∠COE的度数,进而得出∠DOE的度数;(2)设∠AOC=α,则∠BOC=180°-α,依据OE平分∠BOC,可得∠COE=×(180°-α)=90°-α,再分两种情况,依据∠COE=2∠DOB,即可得到∠AOC的度数.【题目详解】(1)∵∠AOC=40°,∴∠BOC=140°,又∵OE平分∠BOC,∴∠COE=×140°=70°,∵∠COD=90°,∴∠DOE=90°-70°=20°;(2)设∠AOC=α,则∠BOC=180°-α,∵OE平分∠BOC,∴∠COE=×(180°-α)=90°-α,分两种情况:当OD在直线AB上方时,∠BOD=90°-α,∵∠COE=2∠DOB,∴90°-α=2(90°-α),解得α=60°.当OD在直线AB下方时,∠BOD=90°-(180°-α)=α-90°,∵∠COE=2∠DOB,∴90°-α=2(α-90°),解得α=108°.综上所述,当∠AOC的度数是60°或108°时,∠COE=2∠DOB.【题目点拨】本题考查角的计算以及角平分线的定义的运用,解决问题的关键是画出图形,运用分类思想进行求解.22、(1)见解析;(2)见解析【解题分析】(1)由等腰三角形的性质可得AD⊥BC,由余角的性质可得∠C=∠BAD;

(2)由“ASA”可证△ABC≌△EAF,可得AC=EF.【题目详解】(1)如图∵,∴是等腰三角形又∵为的中点,∴(等腰三角形三线合一)在和中,∵为公共角,,∴.另解:∵为的中点,∵,又,,∴,∴,又,∴∴,在和中,∵为公共角,,∴.(2)∵,∴,∵,∴,∴,又∵,∴,∴.【题目点拨】本题考查了全等三角形的判定和性质,等腰三角形的性质,熟练运用全等三角形的判定是本题的关键.23、(1)C;(2)没有考虑a=b的情况;(3)△ABC是等腰三角形或直角三角形.【解题分析】(1)根据题目中的书写步骤可以解答本题;(2)根据题目中B到C可知没有考虑a=b的情况;(3)根据题意可以写出正确的结论.【题目详解】(1)由题目中的解答步骤可得,错误步骤的代号为:C,故答案为C;(2)错误的原因为:没有考虑a=b的情况,故答案为没有考虑a=b的情况;(3)本题正确的结论为:△ABC是等腰三角形或直角三角形,故答案为△ABC是等腰三角形或直角三角形.【题目点拨】本题考查因式分解的应用、勾股定理的逆定理,解答本题的关键是明确题意,写出相应的结论,注意考虑问题要全面.24、(1)y=3x-9;(2)-9【分析】(1)利用待定系数法即可解决问题;(2)Q点(m,n)代入y=2x-6可得n=2m-6,推出2n-4m=-12,利用整体代入的思想即可解决问题;【题目详解】解:(1)由题意得,把P(1,-6)代入,解得,k=3,把P(1,-6)代入得,k+b=-6由k=3,解得b=-9,∴一次函数的解析式为y=3x-9;(2)∵点Q(m,n)在函数的图象上,y=3x-9,∴n=3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论