2024届湖南省张家界市名校八上数学期末调研试题含解析_第1页
2024届湖南省张家界市名校八上数学期末调研试题含解析_第2页
2024届湖南省张家界市名校八上数学期末调研试题含解析_第3页
2024届湖南省张家界市名校八上数学期末调研试题含解析_第4页
2024届湖南省张家界市名校八上数学期末调研试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖南省张家界市名校八上数学期末调研试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.已知实数x,y满足(x-2)2+=0,则点P(x,y)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.如果把中的与都扩大3倍,那么这个代数式的值()A.扩大9倍 B.扩大3倍 C.缩小到原来的 D.不变3.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差3.63.67.48.1根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁4.不能判定一个四边形是平行四边形的条件是()A.两组对边分别平行 B.一组对边平行,另一组对边相等C.一组对边平行且相等 D.两组对边分别相等5.为了测量河两岸相对点A、B的距离,小明先在AB的垂线BF上取两点C、D,使CD=BC,再作出BF的垂线DE,使A、C、E在同一条直线上(如图所示),可以证明△EDC≌△ABC,得ED=AB,因此测得ED的长度就是AB的长,判定△EDC≌△ABC的理由是()A.SAS B.ASA C.SSS D.AAS6.下列各式中,从左到右的变形是因式分解的是()A. B.C. D.7.如图,在△ABC中,AC=DC=DB,∠ACB=105°,则∠B的大小为()A.15° B.20° C.25° D.40°8.已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是()A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形9.如果把分式中的x,y同时扩大为原来的4倍,现么该分式的值()A.不变 B.扩大为原来的4倍C.缩小为原来的 D.缩小为原来的10.如图反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x表示时间,y表示张强离家的距离,根据图象提供的信息,以下四个说法错误的是()A.体育场离张强家2.5千米 B.张强在体育场锻炼了15分钟C.体育场离早餐店4千米 D.张强从早餐店回家的平均速度是3千米/小时11.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是()A. B. C. D.12.若+|y+1|=0,则x+y的值为()A.-3 B.3 C.-1 D.1二、填空题(每题4分,共24分)13.如图,已知在上两点,且,若,则的度数为________.14.直线与轴的交点坐标是(,),则直线与坐标轴围成的三角形面积是_______.15.当x=_____时,分式的值为零.16.若代数式的值为零,则x的取值应为_____.17.如图是放在地面上的一个长方体盒子,其中AB=18cm,BC=12cm,BF=10cm,点M在棱AB上,且AM=6cm,点N是FG的中点,一只蚂蚁要沿着长方体盒子的表面从点M爬行到点N,它需要爬行的最短路程为____.18.______________.三、解答题(共78分)19.(8分)如图,某中学校园内有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,学校计划在中间留一块边长为(a+b)米的正方形地块修建一座雕像,然后将阴影部分进行绿化.(1)求绿化的面积.(用含a、b的代数式表示)(2)当a=2,b=4时,求绿化的面积.20.(8分)我国著名的数学家赵爽,早在公元3世纪,就把一个矩形分成四个全等的直角三角形,用四个全等的直角三角形拼成了一个关的正方形(如图1),这个矩形称为赵爽弦图,验证了一个非常重要的结论:在直角三角形中两直角边a、b与斜边c满足关系式.称为勾股定理.(1)爱动脑筋的小明把这四个全等的直角三角形拼成了另一个大的正方形(如图2),也能验证这个结论,请你帮助小明完成验证的过程;(2)如图3所示,,请你添加适当的辅助线证明结论.21.(8分)如图,已知∠B+∠CDE=180°,AC=CE.求证:AB=DE.22.(10分)对垃圾进行分类投放,能有效提高对垃圾的处理和再利用,减少污染,保护环境.为了了解同学们对垃圾分类知识的了解程度,增强同学们的环保意识,普及垃圾分类及投放的相关知识,某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试,根据测试成绩分布情况,他们将全部测试成绩分成、、、四组,绘制了如下统计图表:“垃圾分类知识及投放情况”问卷测试成绩统计图表组别分数/分频数各组总分/分依据以上统计信息,解答下列问题:(1)求得_____,______;(2)这次测试成绩的中位数落在______组;(3)求本次全部测试成绩的平均数.23.(10分)(1)已知a2+b2=6,ab=1,求a﹣b的值;(2)已知a=,求a2+b2的值.24.(10分)计算:(1)(2a)3×b4÷12a3b2(2)(23)25.(12分)如图,(1)画出关于轴对称的图形.(2)请写出点、、的坐标:(,)(,)(,)26.学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:黄瓜的种植成本是1元/kg,售价为1.5元/kg;茄子的种植成本是1.2元/kg,售价是2元/kg.(1)请问采摘的黄瓜和茄子各多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?

参考答案一、选择题(每题4分,共48分)1、D【解题分析】根据非负数的性质得到x﹣2=0,y+1=0,则可确定点P(x,y)的坐标为(2,﹣1),然后根据象限内点的坐标特点即可得到答案.【题目详解】∵(x﹣2)20,∴x﹣2=0,y+1=0,∴x=2,y=﹣1,∴点P(x,y)的坐标为(2,﹣1),在第四象限.故选D.【题目点拨】本题考查了点的坐标及非负数的性质.熟记象限点的坐标特征是解答本题的关键.2、B【分析】将原数的x、y都扩大3倍后计算即可得到答案.【题目详解】把中的与都扩大3倍后得,结果等于扩大了3倍,故选:B.【题目点拨】此题考查分式的基本性质,分式的化简,分子中的x扩大3倍后为3x,是一个整体,平方时容易出现错误.3、A【分析】首先比较平均数,平均数相同时选择方差较小的运动员参加.【题目详解】∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选A.【题目点拨】此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定.4、B【解题分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.A、D、C均符合是平行四边形的条件,B则不能判定是平行四边形.故选B.5、B【分析】根据全等三角形的判定进行判断,注意看题目中提供了哪些证明全等的要素,要根据已知选择判断方法.【题目详解】因为证明在△ABC≌△EDC用到的条件是:CD=BC,∠ABC=∠EDC,∠ACB=∠ECD,所以用到的是两角及这两角的夹边对应相等即ASA这一方法.故选B.【题目点拨】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL,做题时注意选择.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6、D【分析】根据因式分解的意义(把一个多项式化成几个整式的积的形式,这个过程叫因式分解)逐个判断即可.【题目详解】解:A、是整式的乘法,不是因式分解,故本选项不符合题意;

B、右边不是积的形式,所以不是因式分解,故本选项不符合题意;

C、是整式的乘法,不是因式分解,故本选项不符合题意;

D、是因式分解,故本选项符合题意;

故选:D.【题目点拨】本题考查了因式分解的定义,能正确理解因式分解的定义是解此题的关键.7、C【分析】根据边相等的角相等,用∠B表示出∠CDA,然后就可以表示出∠ACB,求解方程即可.【题目详解】解:设∠B=x

∵AC=DC=DB

∴∠CAD=∠CDA=2x

∴∠ACB=180°-2x-x=105°

解得x=25°.

故选:C.【题目点拨】本题主要考查了三角形的内角和外角之间的关系以及等腰三角形的性质.(1)三角形的外角等于与它不相邻的两个内角和.(2)三角形的内角和是180°.求角的度数常常要用到“三角形的内角和是180°”这一隐含的条件.8、B【分析】依据作图即可得到AC=AN=4,BC=BM=3,AB=2+2+1=5,进而得到AC2+BC2=AB2,即可得出△ABC是直角三角形.【题目详解】如图所示,AC=AN=4,BC=BM=3,AB=2+2+1=5,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,故选B.【题目点拨】本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.9、D【分析】根据分式的性质可得==•,即可求解.【题目详解】解:x,y同时扩大为原来的4倍,则有==•,∴该分式的值是原分式值的,故答案为D.【题目点拨】本题考查了分式的基本性质,给分子分母同时乘以一个整式(不为0),不可遗漏是解答本题的关键.10、C【分析】根据函数图象的横坐标,可得时间,根据函数图象的纵坐标,可得距离.【题目详解】A、由纵坐标看出,体育场离张强家2.5千米,故A正确;B、由横坐标看出,30-15=15分钟,张强在体育场锻炼了15分钟,故B正确;C、由纵坐标看出,2.5-1.5=1千米,体育场离早餐店1千米,故C错误;D、由纵坐标看出早餐店离家1.5千米,由横坐标看出从早餐店回家用了95-65=30分钟=0.5小时,1.5÷=3千米/小时,故D正确.故选C.【题目点拨】本题考查了函数图象,观察函数图象获得有效信息是解题关键.11、D【分析】如果一个图形沿着一条直线对折后两部分完全重合,那么这样的图形就叫做轴对称图形.【题目详解】A.是轴对称图形;B.是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选D.【题目点拨】本题考查的是轴对称图形,熟练掌握轴对称图形的概念是解题的关键.12、D【分析】先根据绝对值和算术平方根的非负性,求得x、y的值,最后求和即可.【题目详解】解:∵+|y+1|=0∴x-2=0,y+1=0∴x=2,y=-1∴x+y=2-1=1.故答案为D.【题目点拨】本题主要考查了算术平方根和绝对值的非负性,根据非负性求得x、y的值是解答本题的关键.二、填空题(每题4分,共24分)13、80【分析】先证明四边形ABCD是平行四边形,再通过条件证明,最后根据全等三角形的性质及三角形外角性质即可得出答案.【题目详解】∵,∴四边形ABCD是平行四边形,∴,在△AED和△CFB中,,∴,∴,∵,∴,故答案是.【题目点拨】本题主要考查了平行四边形的性质,结合外角定理计算是解题的关键.14、1【分析】根据直线与y轴交点坐标可求出b值,再求出与x轴交点坐标,从而计算三角形面积.【题目详解】解:∵与y轴交于(0,2),将(0,2)代入,得:b=2,∴直线表达式为:y=2x+2,令y=0,则x=-1,∴直线与x轴交点为(-1,0),令A(0,2),B(-1,0),∴△ABO的面积=×2×1=1,故答案为:1.【题目点拨】此题考查了待定系数法求一次函数解析式,以及一次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.15、1【解题分析】直接利用分式的值为零可得分子为零进而得出答案.【题目详解】解:∵分式的值为零,∴x﹣1=0,解得:x=1.故答案为1.【题目点拨】此题主要考查了分式的值为零的条件,正确把握分式的值为零的条件是解题关键.16、1.【分析】分式的值为2的条件是:(1)分子=2;(1)分母≠2.两个条件需同时具备,缺一不可.【题目详解】解:若代数式的值为零,则(x﹣1)=2或(x﹣1)=2,即x=1或1,∵|x|﹣1≠2,x≠1,∴x的取值应为1,故代数式的值为零,则x的取值应为1.【题目点拨】由于该类型的题易忽略分母不为2这个条件,所以常以这个知识点来命题.17、1cm【分析】利用平面展开图有两种情况,画出图形利用勾股定理求出MN的长即可.【题目详解】如图1,∵AB=18cm,BC=GF=12cm,BF=10cm,∴BM=18﹣6=12,BN=10+6=16,∴MN==1;如图2,∵AB=18cm,BC=GF=12cm,BF=10cm,∴PM=18﹣6+6=18,NP=10,∴MN==2.∵1<2∴蚂蚁沿长方体表面爬到米粒处的最短距离为1.故答案为1cm【题目点拨】此题主要考查了平面展开图的最短路径问题和勾股定理的应用,利用展开图有两种情况分析得出是解题关键.18、【分析】根据零指数幂和负整数指数幂分别化简,再相乘.【题目详解】解:,故答案为:.【题目点拨】本题考查了有理数的乘法运算,涉及到零指数幂和负整数指数幂,解题的关键是掌握零指数幂和负整数指数幂的计算方法.三、解答题(共78分)19、(1)(5a2+3ab)平方米;(2)绿化面积是44平方米.【分析】(1)先找到绿化面积=矩形面积-正方形面积的等量关系,然后再利用多项式乘多项式法则以及完全平方公式化简即可解答;(2)将a与b的值代入(1)计算求值即可.【题目详解】解:(1)依题意得:(3a+b)(2a+b)﹣(a+b)2=6a2+3ab+2ab+b2﹣a2﹣2ab﹣b2=(5a2+3ab)平方米.答:绿化面积是(5a2+3ab)平方米;(2)当a=2,b=4时,原式=20+24=44(平方米).答:绿化面积是44平方米.【题目点拨】本题考查了多项式乘多项式以及整式的混合运算、化简求值,弄清题意列出代数式并进行化简是解答本题的关键.20、(1)见解析;(2)见解析【分析】(1)由图1可知:四个全等的直角三角形的面积+中间小正方形的面积=大正方形的面积,然后化简即可证明;(2)如图,过A作交BC线于D,先证明可得,,然后根据梯形EDBA的面积列式化简即可证明.【题目详解】(1)证明:大正方形面积为:整理得∴;(2)过A作交BC线于D∵,,,∴,∴,∴,∴∴∴.【题目点拨】本题主要考查了运用几何图形来证明勾股定理,矩形和正方形的面积,三角形的面积,锻炼了同学们的数形结合的思想方法.21、证明见解析.【解题分析】如图,过E点作EH∥AB交BD的延长线于H.可证明△ABC≌△EHC(ASA),则由全等三角形的性质得到AB=HE;然后结合已知条件得到DE=HE,所以AB=HE,由等量代换证得AB=DE.【题目详解】证明:如图,过E点作EH∥AB交BD的延长线于H,∵EH∥AB,∴∠A=∠CEH,∠B=∠H在△ABC与△EHC中,,∴△ABC≌△EHC(ASA),∴AB=HE,∵∠B+∠CDE=180°,∠HDE+∠CDE=180°.∴∠HDE=∠B=∠H,∴DE=HE.∵AB=HE,∴AB=DE.【题目点拨】本题考查了全等三角形的判定与性质.在应用全等三角形的判定时,要注意三角形间的公共边和公共角,正确添加适当辅助线构造全等三角形是解题关键.22、(1),;(2);(3)80.1.【分析】⑴根据B组的频数及频率可求得样本总量,然后用样本量乘以D组的百分比可求得m的值,用A的频数除以样本容量即可求得n的值;⑵根据中位数的定义进解答即可求得答案;⑶根据平均数的定义进行求解即可.【题目详解】解:(1)72÷36%=200∴m=200-38-72-60=30;n=38÷200=19%故答案为:30,19%;(2)共200人,中位数落在第100和第101的平均数上∴中位数落在B;(3)本次全部测试成绩的平均数为:(分).【题目点拨】本题考查了频数分布表,扇形统计图,中位数,平均数等知识,熟练掌握相关概念是解决本题的关键.23、(1)±1;(1)1.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论