




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省渭南市2024届八年级数学第一学期期末质量检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如果是一个完全平方式,则n值为()A.1; B.-1; C.6; D.±1.2.下列图案中,是轴对称图形的是()A. B. C. D.3.若分式等于零,则的值是()A. B. C. D.4.若等式(x+6)x+1=1成立,那么满足等式成立的x的值的个数有(
)A.5个 B.4个 C.3个 D.2个5.下列各点中,位于第四象限的点是()A.(3,4) B.(3,4) C.(3,4) D.(3,4)6.如图①,从边长为的正方形中剪去一个边长为的小正方形,然后将剩余部分剪拼成一个长方形(如图②),则上述操作所能验证的公式是()A. B.C. D.7.如图,在四边形ABCD中,∠A=∠C=90°,∠B=α,在AB、BC上分别找一点E、F,使△DEF的周长最小.此时,∠EDF=()A.α B. C. D.180°-2α8.已知一次函数,函数值y随自变量x的增大而减小,且,则函数的图象大致是A. B. C. D.9.国家宝藏节目立足于中华文化宝库资源,通过对文物的梳理与总结,演绎文物背后的故事与历史,让更多观众走进博物馆,让一个个馆藏文物鲜活起来下面四幅图是我国一些博物馆的标志,其中是轴对称图形的是()A. B. C. D.10.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到An.则△OA2A2018的面积是()A.504m2 B.m2 C.m2 D.1009m211.如果一个三角形是轴对称图形,且有一个内角是60°,那么这个三角形是()A.等边三角形 B.等腰直角三角形C.等腰三角形 D.含30°角的直角三角形12.长度分别为3,7,a的三条线段能组成一个三角形,则a的值可以是()A.3 B.4 C.6 D.10二、填空题(每题4分,共24分)13.计算=________________.14.已知一组数据:3,4,5,5,6,6,6,这组数据的众数是________.15.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为,较短直角边长为,若,大正方形的面积为13,则小正方形的面积为________.16.若点P(a,2015)与点Q(2016,b)关于y轴对称,则_______.17.若的平方根是±3,则__________.18.当x______时,分式无意义.三、解答题(共78分)19.(8分)如图(1)AC⊥AB,BD⊥AB,AB=12cm,AC=BD=8cm,点P在线段AB上以2cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动,它们运动的时间为t(s).(1)若点Q的运动速度与点P的运动速度相等,当t=2时,△ACP与△BPQ是否全等,请说明理由;(2)在(1)的条件下,判断此时线段PC和线段PQ的位置关系,并证明;(3)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”改为“∠CAB=∠DBA=50°”,其他条件不变.设点Q的运动速度为xcm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.20.(8分)为“厉行节能减排,倡导绿色出行”,某公司拟在我县甲、乙两个街道社区试点投放一批共享单车(俗称“小黄车”),这批自行车包括A、B两种不同款型,投放情况如下表:成本单价(单位:元)投放数量(单位:辆)总价(单位:元)A型5050B型50成本合计(单位:元)7500(1)根据表格填空:本次试点投放的A、B型“小黄车”共有辆;用含有的式子表示出B型自行车的成本总价为;(2)试求A、B两种款型自行车的单价各是多少元?(3)经过试点投放调查,现在该公司决定采取如下方式投放A型“小黄车”:甲街区每100人投放n辆,乙街区每100人投放(n+2)辆,按照这种投放方式,甲街区共投放1500辆,乙街区共投放1200辆,如果两个街区共有人,求甲街区每100人投放A型“小黄车”的数量.21.(8分)在平面直角坐标系中,一次函数yx+4的图象与x轴和y轴分别交于A、B两点.动点P从点A出发,在线段AO上以每秒1个单位长度的速度向点O作匀速运动,到达点O即停止运动.其中A、Q两点关于点P对称,以线段PQ为边向上作正方形PQMN.设运动时间为秒.如图①.(1)当t=2秒时,OQ的长度为;(2)设MN、PN分别与直线yx+4交于点C、D,求证:MC=NC;(3)在运动过程中,设正方形PQMN的对角线交于点E,MP与QD交于点F,如图2,求OF+EN的最小值.22.(10分)有10名合作伙伴承包了一块土地准备种植蔬菜,他们每人可种茄子3亩或辣椒2亩,已知每亩茄子平均可收入0.5万元,每亩辣椒平均可收入0.8万元,要使总收入不低于15.6万元,则最多只能安排多少人种茄子?23.(10分)已知二元一次方程,通过列举将方程的解写成下列表格的形式:-156650如果将二元一次方程的解所包含的未知数的值对应直角坐标系中一个点的横坐标,未知数的值对应这个点的纵坐标,这样每一个二元一次方程的解,就可以对应直角坐标系中的一个点,例如:方程的解的对应点是.(1)表格中的________,___________;(2)通过以上确定对应点坐标的方法,将表格中给出的五个解依次转化为对应点的坐标,并在所给的直角坐标系中画出这五个点;根据这些点猜想方程的解的对应点所组成的图形是_________,并写出它的两个特征①__________,②_____________;(3)若点恰好落在的解对应的点组成的图形上,求的值.24.(10分)如图,已知△ABC三个顶点的坐标分别A(-2,3)、B(-6,0)、C(-1,0).(1)画出△ABC关于y轴对称的图形,并写出点B的对应点B1的坐标;(2)在y轴上找出点M,使MA+MC最小,请画出点M(写出画图过程,用虚线保留画图痕迹)25.(12分)数学课上,张老师出示了如下框中的题目.已知,在中,,,点为的中点,点和点分别是边和上的点,且始终满足,试确定与的大小关系.小明与同桌小聪讨论后,进行了如下解答:(1)(特殊情况,探索结论)如图1,若点与点重合时,点与点重合,容易得到与的大小关系.请你直接写出结论:____________(填“”,“”或“”).(2)(特例启发,解答题目)如图2,若点不与点重合时,与的大小关系是:_________(填“”,“”或“”).理由如下:连结,(请你完成剩下的解答过程)(3)(拓展结论,设计新题)在中,,点为的中点,点和点分别是直线和直线上的点,且始终满足,若,,求的长.(请你直接写出结果)26.如图,△ABC是等腰三角形,AB=AC,分别以两腰为边向△ABC外作等边三角形ADB和等边三角形ACE.若∠DAE=∠DBC,求∠BAC的度数.
参考答案一、选择题(每题4分,共48分)1、D【解题分析】如果是一个完全平方式则【题目详解】,则,正确答案选D.【题目点拨】本题考查学生对完全平方式概念的理解和掌握,学会将一个式子配凑成完全平方式是解答本题的关键.2、D【分析】根据轴对称图形的定义:“把一个图形沿某条直线对折,直线两旁的部分能完全重合”可以得到答案.【题目详解】解:轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能完全重合,所以A,B,C沿一条直线对折后都不能满足直线两旁的部分能完全重合,所以都不是轴对称图形,只有D符合.故选D.【题目点拨】本题考查的是“轴对称图形的定义”的应用,所以熟练掌握概念是关键.3、C【分析】根据分式的值为零的条件可以求出的值,分式的值是1的条件是:分子为1,分母不为1.【题目详解】∵且,解得:,故选:C.【题目点拨】本题考查了分式的值为零的条件:分式的分子为1,分母不为1,则分式的值为1.4、C【分析】分情况讨论:当x+1=0时;当x+6=1时,分别讨论求解.还有-1的偶次幂都等于1.【题目详解】如果(x+6)x+1=1成立,则x+1=0或x+6=1或-1,即x=-1或x=-5或x=-7,当x=-1时,(x+6)0=1,当x=-5时,1-4=1,当x=-7时,(-1)-6=1,故选C.【题目点拨】本题考查了零指数幂的意义和1的指数幂,关键是熟练掌握零指数幂的意义和1的指数幂.5、A【分析】根据平面直角坐标系中点的坐标特征解答即可,第四象限内点的横坐标大于0,纵坐标小于0.【题目详解】∵第四象限内点的横坐标大于0,纵坐标小于0,∴(3,4)位于第四象限.故选A.【题目点拨】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y轴上的点横坐标为0.6、A【分析】由大正方形的面积-小正方形的面积=矩形的面积,进而可以证明平方差公式.【题目详解】由大正方形的面积-小正方形的面积=矩形的面积得故答案为:A.【题目点拨】本题考查了平方差公式的证明,根据题意列出方程得出平方差公式是解题的关键.7、D【分析】作点D关于BA的对称点P,点D关于BC的对称点Q,连接PQ,交AB于E,交BC于F,则点E,F即为所求.根据四边形内角和等于360°,可得∠ADC的度数,进而可得∠P+∠Q的度数,由对称性可得∠EDP+∠FDQ的度数,进而即可求解.【题目详解】作点D关于BA的对称点P,点D关于BC的对称点Q,连接PQ,交AB于E,交BC于F,则点E,F即为所求.∵四边形ABCD中,∠A=∠C=90°,∠B=α,∴∠ADC=180°-α,∴∠P+∠Q=180°-∠ADC=α,由对称性可知:EP=ED,FQ=FD,∴∠P=∠EDP,∠Q=∠FDQ,∴∠EDP+∠FDQ=∠P+∠Q=α,∴故选D.【题目点拨】本题主要考查轴对称的性质和应用,四边形的内角和定理以及三角形的内角和定理,掌握掌握轴对称图形的性质是解题的关键.8、A【分析】根据一次函数的性质得到k<0,而kb<0,则b>0,所以一次函数y=kx+b的图象经过第二、四象限,与y轴的交点在x轴上方,据此即可求得答案.【题目详解】∵一次函数y=kx+b,y随着x的增大而减小,∴k<0,∴一次函数y=kx+b的图象经过第二、四象限;∵kb<0,∴b>0,∴图象与y轴的交点在x轴上方,∴一次函数y=kx+b的图象经过第一、二、四象限,故选A.【题目点拨】本题考查了一次函数的图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).9、A【分析】根据轴对称图形的定义和图案特点即可解答.【题目详解】A、是轴对称图形,故选项正确;
B、不是轴对称图形,故本选项错误;
C不是轴对称图形,故选项错误;
D、不是轴对称图形,故本选项错误.
故选A.【题目点拨】此题考查轴对称图形的概念,解题关键在于掌握其定义和识别图形.10、A【分析】由OA4n=2n知OA2017=+1=1009,据此得出A2A2018=1009-1=1008,据此利用三角形的面积公式计算可得.【题目详解】由题意知OA4n=2n,∴OA2016=2016÷2=1008,即A2016坐标为(1008,0),∴A2018坐标为(1009,1),则A2A2018=1009-1=1008(m),∴=A2A2018×A1A2=×1008×1=504(m2).故选:A.【题目点拨】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.11、A【解题分析】∵这个三角形是轴对称图形,∴一定有两个角相等,∴这是一个等腰三角形.∵有一个内角是60°,∴这个三角形是等边三角形.故选A.12、C【分析】根据三角形的三边关系:①两边之和大于第三边,②两边之差小于第三边即可得到答案.【题目详解】解:7−3<x<7+3,即4<x<10,只有选项C符合题意,故选:C.【题目点拨】此题主要考查了三角形的三边关系,解题的关键是熟练掌握三角形的三边关系定理.二、填空题(每题4分,共24分)13、【分析】在进行分式乘方运算时,先确定运算结果的符号,负数的偶数次方为正,而奇数次方为负,同时要注意运算顺序,先乘方,后乘除.【题目详解】.故答案是:xy2【题目点拨】本题考查了负整数指数幂的运算,分式的乘除法,分式的运算首先要分清运算顺序,在这个题目中,首先进行乘方运算,然后统一成乘法运算,最后进行约分运算.14、1【分析】根据众数的定义,即可得到答案.【题目详解】∵3,4,5,5,1,1,1中1出现的次数最多,∴这组数据的众数是:1.故答案是:1.【题目点拨】本题主要考查众数的定义,掌握“一组数据中,出现次数最多的数,称为众数”是解题的关键.15、1【分析】观察图形可知,小正方形的面积=大正方形的面积-4个直角三角形的面积,利用已知(a+b)2=21,大正方形的面积为13,可以得出直角三角形的面积,进而求出答案.【题目详解】解:如图所示:由题意可知:每个直角三角形面积为,则四个直角三角形面积为:2ab;大正方形面积为a2+b2=13;小正方形面积为13-2ab∵(a+b)2=21,∴a2+2ab+b2=21,∵大正方形的面积为13,2ab=21-13=8,∴小正方形的面积为13-8=1.故答案为:1.【题目点拨】此题主要考查了勾股定理的应用,熟练应用勾股定理理解大正方形面积为a2+b2=13是解题关键.16、-1【分析】直接利用关于y轴对称点的性质得出a,b的值,进而利用有理数的乘方运算法则求出答案.【题目详解】解:∵点P(a,2015)与点Q(2016,b)关于y轴对称,∴a=2016,b=2015,∴;故答案为:;【题目点拨】本题考查了关于y轴对称点的性质,正确得出a,b的值是解题关键.17、1【分析】根据平方根的定义先得到(±3)2=2a-1,解方程即可求出a.【题目详解】解:∵2a-1的平方根为±3,
∴(±3)2=2a-1,
解得a=1.
故答案为:1.【题目点拨】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.18、【解题分析】由题意得:2x-7=0,解得:x=,故答案为.【题目点拨】本题考查的是分式无意义,解题的关键是明确分式无意义的条件是分母等于0.三、解答题(共78分)19、(1)△ACP与△BPQ全等,理由详见解析;(2)PC⊥PQ,证明详见解析;(3)当t=2s,x=2cm/s或t=3s,x=cm/s时,△ACP与△BPQ全等.【分析】(1)利用SAS定理证明△ACP≌△BPQ;(2)根据全等三角形的性质判断线段PC和线段PQ的位置关系;(3)分△ACP≌△BPQ,△ACP≌△BQP两种情况,根据全等三角形的性质列式计算.【题目详解】(1)△ACP与△BPQ全等,理由如下:当t=2时,AP=BQ=4cm,则BP=12﹣4=8cm,∴BP=AC=8cm,又∵∠A=∠B=90°,在△ACP和△BPQ中,,∴△ACP≌△BPQ(SAS).(2)PC⊥PQ,证明:∵△ACP≌△BPQ,∴∠ACP=∠BPQ,∴∠APC+∠BPQ=∠APC+∠ACP=90°.∴∠CPQ=90°,即线段PC与线段PQ垂直.(3)①若△ACP≌△BPQ,则AC=BP,AP=BQ,∴12﹣2t=8,解得,t=2(s),则x=2(cm/s).②若△ACP≌△BQP,则AC=BQ,AP=BP,则2t=×12,解得,t=3(s),则x=8÷3=(cm/s),故当t=2s,x=2cm/s或t=3s,x=cm/s时,△ACP与△BPQ全等.【题目点拨】本题属于三角形专题,考查的是全等三角形的判定与性质,掌握全等三角形的判定定理和性质定理、注意分类讨论思想的灵活运用是解题的关键.20、(1)100;50(x+10);
(2)70元和80元;(3)2辆.【分析】(1)看图填数即可;
(2)设A型车的成本单价为x元,则B型车的成本单价为(x+10)元,根据成本共计7500元,列方程求解即可;
(3)根据两个街区共有人,列出分式方程进行求解并检验即可.【题目详解】解:(1)由图表表可知,本次试点投放的A、B型“小黄车”共有:50+50=100(辆);
B型自行车的成本总价为:
故答案为:100;50(x+10)
(2)由A型车的成本单价为x元,B型车的成本单价为(x+10)元,∴总价为,
解得,
∴,
∴A、B两型自行车的单价分别是70元和80元;(3)依题意,可列得方程:解得:n=2
经检验:n=2是所列方程的解,
∴甲街区每100人投放A型“小黄车”2辆.【题目点拨】本题主要考查了一元一次方程以及分式方程的应用,解题时注意:列分式方程解应用题一定要审清题意,找相等关系是着眼点,要学会分析题意,提高理解能力.21、(1)2;(2)证明见解析;(3).【分析】(1)解方程得到OA=1,由t=2,于是得到结论;
(2)根据AP=PQ=t,得到OQ=1-2t,根据正方形的性质得到PQ=QM=MN=PN=t,求得M(1-2t,t),N(1-t,t),C(1-t,t),求得CM=(1-t)-(1-2t)=t,CN=(1-t)-(1-t)=t,于是得到结论;
(3)作矩形NEFK,则EN=FK,推出当O,F,K三点共线时,OF+EN=OF+FK的值最小,如图,作OH⊥QN于H,解直角三角形即可得到结论.【题目详解】(1)在yx+4中,令y=0,得x=1,∴OA=1.∵t=2,∴AP=PQ=2,∴OQ=1﹣2﹣2=2.故答案为:2;(2)∵AP=PQ=t,∴OQ=1﹣2t.∵四边形PQMN是正方形,∴PQ=QM=MN=PN=t,∴M(1﹣2t,t),N(1﹣t,t),C(1t,t),∴CM=(1t)﹣(1﹣2t)t,CN=(1﹣t)﹣(1t)t,∴CM=CN;(3)作矩形NEFK,则EN=FK.∵OF+EN=OF+FK,∴当O,F,K三点共线时,OF+EN=OF+FK的值最小,如图,作OH⊥QN于H,在等腰直角三角形PQN中,∵PQ=t,∴QNt,∴HN=QN﹣QHt﹣(t﹣3)=3,∴OF+EN的最小值为:HE+EN=HN=3.【题目点拨】本题考查了一次函数的综合题,正方形的性质,矩形的性质,最短路线问题,正确的作出图形是解题的关键.22、最多只能安排4人种茄子.【解题分析】设安排人种茄子,根据有名合作伙伴,每人可种茄子亩或辣椒亩,已知每亩茄子可收入万元,每亩辣椒可收入万元,若要使收入不低于万元,可列不等式求解.【题目详解】安排人种茄子,依题意得:,解得:.所以最多只能安排人种茄子.23、(1)0,-1;(2)见解析;(3)-1.【分析】(1)根据题意,将m和n代入方程即可得解;(2)将每个对应点的坐标在直角坐标系中进行描点,即可得出图形,然后观察其特征即可;(3)将点P代入即可得出的值.【题目详解】(1)根据表格,得,∴m=0,n=-1;(2)如图所示,即为所求:该图形是一条直线;①经过第一、二、四象限;②与y轴交于点(0,5)(答案不唯一);(3)把x=﹣2a,y=a-1代入方程x+y=5中,得-2a+(a-1)=5,解之,得a=-1.【题目点拨】此题主要考查二元一次方程和平面直角坐标系综合运用,熟练掌握,即可解题.24、答案见解析【解题分析】(1)作出A、B、C关于y轴的对称点即可;(2)连接A1C,与y轴交点即为M.【题目详解】(1)如图,B1坐标为(6,0);(2)M点如图,【题目点拨】本题考查了作图﹣﹣轴对称变换,解题的关键是找到对称点.25、(1)=;(2)=,理由见解析;(1)1或1【分析】(1)根据等直角三角形斜边的中线等于斜边的一半解答即可;(2)连结,证明△BDE≌△ADF即可;(1)分四种情况求解:①当点E在BA的延长线上,点F在AC的延长线上;②当点E在AB的延长线上,点F在CA的延长线上;③当点E在AB的延长线上,点F在AC的延长线上;④当点E在BA的延长线上,点F在CA的延长线上.【题目详解】(1)∵,,∴∠ACD=45°.∵,点为的中点,∴∠CAD=45°,∴∠CAD=∠ACD,∴AD=CD,即DE=DF;(2)连结,∵,点为的中点,∴AD==BD.∵,,点为的中点,∴∠B=∠C=∠CAD=∠BAD=45°,AD⊥BC,∴∠ADE+∠BDE=90°.∵DE⊥DF,∴∠ADE+∠ADF=90°,∴∠BDE=∠ADF.在△BDE和△ADF中,∵∠B=∠CAD=45°,AD=BD,∠BDE=∠ADF,∴△BDE≌
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学四年级上册英语试卷单选题100道及答案
- 2025机械设备租赁合同样本
- 2025合作合同书【合作经营合同书】
- 上海中介租房服务合同书
- 投资合作合同书范例二零二五年
- 回购协议合同书二零二五年
- 2025年上海长期服务合同
- 2025年餐饮企业供应合同样本
- 2025修订后造价师聘用合同
- 2025物业管理服务合同(派遣制范本)
- 小学三年级音乐《马兰谣》课件
- “当代文化参与”学习任务群相关单元的设计思路与教学建议课件(共51张PPT)
- 提高卧床患者踝泵运动的执行率品管圈汇报书模板课件
- 同理心的应用教学教材课件
- DB4102-T 025-2021海绵城市建设施工与质量验收规范-(高清现行)
- 城市轨道交通安全管理隐患清单
- 锡膏使用记录表
- 儿童保健学课件:绪论
- 中小学校园安全稳定工作岗位责任清单
- 校园安全存在问题及对策
- NY∕T 309-1996 全国耕地类型区、耕地地力等级划分
评论
0/150
提交评论