2024届陕西省汉中市数学八上期末监测模拟试题含解析_第1页
2024届陕西省汉中市数学八上期末监测模拟试题含解析_第2页
2024届陕西省汉中市数学八上期末监测模拟试题含解析_第3页
2024届陕西省汉中市数学八上期末监测模拟试题含解析_第4页
2024届陕西省汉中市数学八上期末监测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届陕西省汉中市数学八上期末监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图,已知,下列结论:①;②;③;④;⑤;⑥;⑦.其中正确的有()A.个 B.个 C.个 D.个2.若点与点关于轴对称,则的值是()A.-2 B.-1 C.0 D.13.甲,乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后,结果如下。某同学根据上表分析,得出如下结论。班级参加人数中位数方差平均数甲55149191135乙55151110135(1)甲,乙两班学生成绩的平均水平相同。(2)乙班优秀的人数多于甲班优秀的人数。(每分钟输入汉字≧150个为优秀。)(3)甲班成绩的波动情况比乙班成绩的波动小。上述结论中正确的是()A.(1)(2)(3) B.(1)(2) C.(1)(3) D.(2)(3)4.篆刻是中国独特的传统艺术,篆刻出来的艺术品叫印章.印章的文字刻成凸状的称为“阳文”,刻成凹状的称为“阴文”.如图所示的“希望”即为阳文印章在纸上盖出的效果,此印章是下列选项中的(阴影表示印章中的实体部分,白色表示印章中的镂空部分)()A. B. C. D.5.下列图标中,既是轴对称图形,又是中心对称图形的是()A. B.C. D.6.在等腰中,,则的度数不可能是()A. B. C. D.7.如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=()A.35° B.95° C.85° D.75°8.如图,△ABC的面积为8cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为(

)A.2cm2

B.3cm2

C.4cm2

D.5cm29.若a+b=3,ab=-7,则的值为()A.- B.- C.- D.-10.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,下列结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④BE=DE;⑤SBDE:S△ACD=BD:AC,其中正确的个数()A.5个 B.4个 C.3个 D.2个二、填空题(每小题3分,共24分)11.分式方程:的解是__________.12.新型冠状病毒是一种形状为冠状的病毒,其直径大约为,将用科学记数法表示为______.13.一个多边形所有内角都是135°,则这个多边形的边数为_________14.如图,已知雷达探测器在一次探测中发现了两个目标A,B,其中A的位置可以表示成(60°,6),那么B可以表示为____________,A与B的距离为____________15.如图,,要使,则的度数是_____.16.若,,则的值为__________.17.在△ABC中,∠ACB=50°,CE为△ABC的角平分线,AC边上的高BD与CE所在的直线交于点F,若∠ABD:∠ACF=3:5,则∠BEC的度数为______.18.若分式有意义,则的取值范围是__________.三、解答题(共66分)19.(10分)如图(单位:m),某市有一块长为(3a+b)m、宽为(2a+b)m的长方形地,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=6,b=1时,绿化的面积.20.(6分)如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O.给出下列3个条件:①∠EBO=∠DCO;②AE=AD;③OB=OC.(1)上述三个条件中,由哪两个条件可以判定ΔABC是等腰三角形?(用序号写出所有成立的情形)(2)请选择(1)中的一种情形,写出证明过程.21.(6分)在平面直角坐标系中,已知点A的坐标为(0,15),点B的坐标为(20,0).(1)求直线AB的表达式;(2)若点C的坐标为(m,9),且S△ABC=30,求m的值;(3)若点D的坐标为(12,0),在射线AB上有两点P,Q,使得以O,P,Q为顶点的三角形与△OPD全等,求点P的坐标.22.(8分)甲、乙、丙三明射击队员在某次训练中的成绩如下表:队员成绩(单位:环)甲66778999910乙67788889910丙66677810101010针对上述成绩,三位教练是这样评价的:教练:三名队员的水平相当;教练:三名队员每人都有自己的优势;教练:如果从不同的角度分析,教练和说的都有道理.你同意教练的观点吗?通过数据分析,说明你的理由.23.(8分)“绿水青山就是金山银山”,随着生活水平的提高人们对饮水品质的需求越来越高,岳阳市槐荫公司根据市场需求代理,两种型号的净水器,每台型净水器比每台型净水器进价多元,用万元购进型净水器与用万元购进型净水器的数量相等(1)求每台型、型净水器的进价各是多少元?(2)槐荫公司计划购进,两种型号的共台进行试销,,购买资金不超过万元.试求最多可以购买型净水器多少台?24.(8分)已知:在中,,为的中点,,,垂足分别为点,且.求证:是等边三角形.25.(10分)如图,在平面直角坐标系中,三个顶点的坐标分别是,,.(1)在图中,以轴为对称轴,作出的轴对称图形.(2)在图中,把平移使点平移到点,请作出平移后的,并直接写出点和点的坐标.26.(10分)计算.(1).(2).

参考答案一、选择题(每小题3分,共30分)1、C【分析】利用得到对应边和对应角相等可以推出①③,根据对应角相等、对应边相等可推出②④⑦,再根据全等三角形面积相等可推出⑤,正确;根据已知条件不能推出⑥.【题目详解】解:①∵∴故①正确;②∵∴即:,故②正确;③∵∴;∴即:,故③正确;④∵∴;∴,故④正确;⑤∵∴,故⑤正确;⑥根据已知条件不能证得,故⑥错误;⑦∵∴;∴,故⑦正确;故①②③④⑤⑦,正确的6个.故选C.【题目点拨】本题考查了全等三角形的性质,正确掌握全等三角形对应边相等,对应角相等是解答此题的关键.2、D【分析】根据关于y轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变,据此求出m、n的值,代入计算可得.【题目详解】解:∵点与点关于y轴对称,

∴,,

解得:m=3,,n=−2,

所以m+n=3−2=1,

故选:D.【题目点拨】本题主要考查关于x、y轴对称的点的坐标,解题的关键是掌握两点关于y轴对称,纵坐标不变,横坐标互为相反数.3、B【分析】平均水平的判断主要分析平均数;根据中位数不同可以判断优秀人数的多少;波动大小比较方差的大小.【题目详解】解:从表中可知,平均字数都是135,(1)正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,(2)正确;甲班的方差大于乙班的,又说明甲班的波动情况小,所以(3)错误.综上可知(1)(2)正确.故选:B.【题目点拨】本题考查了平均数,中位数,方差的意义.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.4、D【分析】可看成镜面对称,根据镜面对称的规律:镜子中看到的文字与实际文字是关于镜面成垂直的线对称,即可判断.【题目详解】解:易得“望”字应在左边,“希”字应在右边,字以外的部分为镂空部分,故选D.【题目点拨】此题考查的是镜面对称,掌握镜面对称的规律是解决此题的关键.5、D【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【题目详解】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选:D.【题目点拨】本题考查了轴对称图形与中心对称的概念,熟悉基本概念及判断方法是解题的关键.6、C【分析】根据等腰三角形的定义,分是顶角还是底角3种情况进行讨论分析确定答案.【题目详解】当是顶角时,和是底角,,当和是底角时,是顶角,,当和是底角时,是顶角,.所以不可能是.故选:C.【题目点拨】考查等腰三角形的定义,确定相等的底角,注意分情况讨论,分类不要漏掉情况.7、C【分析】根据CE是△ABC的外角∠ACD的平分线,∠ACE=60°,得出∠ACD=120°;再根据三角形的外角等于与它不相邻的两个内角和即可求解.【题目详解】解:∵CE是△ABC的外角∠ACD的平分线,∠ACE=60°∴∠ACD=2∠ACE=120°∵∠ACD=∠B+∠A∴∠A=∠ACD-∠B=120°-35°=85°故选:C.【题目点拨】本题考查了三角形外角性质,角平分线定义的应用,注意:三角形的一个外角等于和它不相邻的两个内角的和.8、C【分析】延长AP交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可求得△PBC的面积.【题目详解】延长AP交BC于E.∵AP垂直∠B的平分线BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°.在△APB和△EPB中,∵,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCES△ABC=4cm1.故选C.【题目点拨】本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出S△PBC=S△PBE+S△PCES△ABC.9、C【解题分析】试题解析:原式=,∵a+b=3,ab=-7,∴原式=.故选C.10、C【分析】根据角平分线的性质,可得CD=ED,易证得△ADC≌△ADE,可得AC+BE=AB;由等角的余角相等,可证得∠BDE=∠BAC;然后由∠B的度数不确定,可得BE不一定等于DE;又由CD=ED,△ABD和△ACD的高相等,所以S△BDE:S△ACD=BE:AC.【题目详解】解:①正确,∵在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,∴CD=ED;②正确,因为由HL可知△ADC≌△ADE,所以AC=AE,即AC+BE=AB;③正确,因为∠BDE和∠BAC都与∠B互余,根据同角的补角相等,所以∠BDE=∠BAC;④错误,因为∠B的度数不确定,故BE不一定等于DE;⑤错误,因为CD=ED,△ABD和△ACD的高相等,所以S△BDE:S△ACD=BE:AC.故选:C.【题目点拨】此题考查了角平分线的性质以及全等三角形的判定与性质.此题比较适中,注意掌握数形结合思想的应用.二、填空题(每小题3分,共24分)11、【分析】先去分母两边同时乘以x-1,转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【题目详解】解:去分母得:-1-x+1=2,

解得:x=-2,

经检验x=-2是分式方程的解,

故答案为:x=-2【题目点拨】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.12、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:0.000000102=1.02×10-1,

故答案为:1.02×10-1.【题目点拨】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.13、6【分析】先求出每一外角的度数是45°,然后用多边形的外角和为360°÷45°进行计算即可得解.【题目详解】解:∵所有内角都是135°,∴每一个外角的度数是180°-135°=45°,∵多边形的外角和为360°,∴360°÷45°=8,即这个多边形是八边形考点:多边形的内角和外角点评:本题考查了多边形的内角与外角的关系,也是求解正多边形边数常用的方法之一.14、【分析】按已知可得,表示一个点,距离是自内向外的环数,角度是所在列的度数,据此进行判断即可得解.【题目详解】∵(a,b)中,b表示目标与探测器的距离;a表示以正东为始边,逆时针旋转后的角度,∴B可以表示为.∵A、B与雷达中心的连线间的夹角为150°-60°=90°,∴AB==故填:(1).(2)..【题目点拨】本题考查了坐标确定位置,解题时由已知条件正确确定A、B的位置及勾股定理的应用是解决本题的关键.15、115°【分析】延长AE交直线b于B,依据∠2=∠3,可得AE∥CD,当a∥b时,可得∠1=∠5=65°,依据平行线的性质,即可得到∠4的度数.【题目详解】解:如图,延长AE交直线b于B,

∵∠2=∠3,

∴AE∥CD,

当a∥b时,∠1=∠5=65°,

∴∠4=180°-∠5=180°-65°=115°,

故答案为:115°.【题目点拨】本题主要考查了平行线的性质与判定,解题时注意:应用平行线的判定和性质定理时,一定要弄清题设和结论,切莫混淆.16、【分析】根据(m+n)2=(m−n)2+4mn,把m−n=3,mn=5,解答出即可;【题目详解】根据(m+n)2=(m−n)2+4mn,把m−n=3,mn=5,得,(m+n)2=9+20=29∴=故答案为.【题目点拨】本题考查了完全平方公式,熟记完全平方公式及其变形,是正确解答的基础.17、100°或130°.【分析】分两种情形:①如图1中,当高BD在三角形内部时.②如图2中,当高BD在△ABC外时,分别求解即可.【题目详解】①如图1中,当高BD在三角形内部时,∵CE平分∠ACB,∠ACB=50°,∴∠ACE=∠ECB=25°.∵∠ABD:∠ACF=3:5,∴∠ABD=15°.∵BD⊥AC,∴∠BDC=90°,CBD=40°,∴∠CBE=∠CBD+∠ABD=40°+15°=55°,∴∠BEC=180°﹣∠ECB﹣∠CBE=180°﹣25°﹣55°=100°②如图2中,当高BD在△ABC外时,同法可得:∠ABD=25°,∠ABD=15°,∠CBD=40°,∴∠CBE=∠CBD﹣∠ABD=40°﹣15°=25°,∴∠BEC=180°﹣25°﹣25°=130°,综上所述:∠BEC=100°或130°.故答案为:100°或130°.【题目点拨】本题考查了三角形内角和定理,三角形的外角的性质,三角形的角平分线的定义,三角形的高等知识,解题的关键是世界之外基本知识,学会用分类讨论的思想思考问题,属于中考常考题型.18、【分析】根据分式的概念,分式有意义则分母不为零,由此即得答案.【题目详解】要使有意义,则,故答案为:.【题目点拨】考查了分式概念,注意分式有意义则分母不能为零,这是解题的关键内容,需要记住.三、解答题(共66分)19、(5a2+3ab)m2,198m2【分析】首先列出阴影部分的面积的表达式,再化简求值.【题目详解】解:绿化的面积为(3a+b)(2a+b)-(a+b)2=(5a2+3ab)m2当a=6,b=1时,绿化的面积为5a2+3ab=5×62+3×6×1=198(m2)【题目点拨】本题运用列代数式求值的知识点,关键是化简时要算准确.20、(1)①②与①③,②③(写前两个或写三个都对)(2)见解析【分析】(1)由①②;①③.两个条件可以判定△ABC是等腰三角形,(2)先求出∠ABC=∠ACB,即可证明△ABC是等腰三角形.【题目详解】(1)①②与①③或②③(写前两个或写三个都对)(2)选①③证明如下,∵OB=OC,∴∠OBC=∠OCB,∵∠EBO=∠DCO,又∵∠ABC=∠EBO+∠OBC,∠ACB=∠DCO+∠OCB,∴∠ABC=∠ACB,∴△ABC是等腰三角形.【题目点拨】本题主要考查了等腰三角形的判定,解题的关键是找出相等的角求∠ABC=∠ACB.21、(1);(2)m=4或m=12;(3)P1(12,6),P2(4,12),P3(36,-12)【分析】(1)运用待定系数法求解即可;(2)结合C的坐标,表示出三角形ABC的面积,分类求解即可;(3)针对P的位置进行分类讨论即可.【题目详解】(1)∵点A(0,15)在直线AB上,故可设直线AB的表达式为y=kx+15又∵点B(20,0)在直线AB上∴20k+15=0,∴k=,∴直线AB的表达为;(2)过C作CM∥x轴交AB于M∵点C的坐标为(m,9)∴点M的纵坐标为9,当y=9时,x+15=9,解得x=8,∴M(8,9),∴CM=|m-8|,∴S△ABC=S△AMC+S△BMC=CM·(yA-yM)+CM·(yM-yB)=CM·OA=|m-8|∵S△ABC=30,∴|m-8|=30,解得m=4或m=12;(3)①当点P在线段AB上时,(i)若点P在B,Q之间,当OQ=OD=12,且∠POQ=∠POD时,△OPQ≌△OPD,∵OA=15,OB=20,∴AB==25,设△AOB中AB边上的高为h,则AB·h=OA·OB,∴h=12,∴OQ⊥AB,∴PD⊥OB,∴点P的横坐标为12,当x=12时,y=x+15=6,∴P1(12,6),(ii)若点P在A,Q之间,当PQ=OD=12,且∠OPQ=∠POD时,有△POQ≌△OPD,则BP=OB=20,∴BP:AB=20:25=4:5,∴S△POB=S△AOB,作PH⊥OB于H,则S△POB=OB·PH,∴OB·PH=×OB·OA,∴PH=OA=×15=12,当y=12时,x+15=12,解得x=4,∴P2(4,12),②当点P在AB的延长线上时,(i)若点Q在B,P之间,且PQ=OD,∠OPQ=∠POD时,△POQ≌△OPD,作OM⊥AB于M,PN⊥OB于N,则PN=OM=12,∴点P的纵坐标为-12,当y=-12时,x+15=-12,解得x=36,∴P3(36,-12),(ii)若点Q在BP的延长线上或BP的反向延长线上,都不存在满足条件的P,Q两点.综上所述,满足条件的点P为P1(12,6),P2(4,12),P3(36,-12).【题目点拨】本题考查待定系数法求解析式,坐标与图形,全等三角形的性质等,熟练理解全等三角形的性质并灵活对问题进行分类讨论是解题关键.22、同意教练C的观点,见解析【分析】依次求出甲、乙、丙三名队员成绩的平均数、中位数、方差及众数,根据数据的稳定性即可判断.【题目详解】解:依题意渴求得:甲队员成绩的平均数为=8;乙队员成绩的平均数为=8;丙队员成绩的平均数为=8;甲队员成绩的中位数为,乙队员成绩的中位数为,丙队员成绩的中位数为,甲队员成绩的方差为=[(6−8)2+(6−8)2+(7−8)2+(7−8)2+(8−8)2+(9−8)2+(9−8)2+(9−8)2+(9−8)2+(10−8)2]=1.8;乙队员成绩的方差为=[(6−8)2+(7−8)2+(7−8)2+(8−8)2+(8−8)2+(8−8)2+(8−8)2+(9−8)2+(9−8)2+(10−8)2]=1.2;丙队员成绩的方差为=[(6−8)2+(6−8)2+(6−8)2+(7−8)2+(7−8)2+(8−8)2+(10−8)2+(10−8)2+(10−8)2+(10−8)2]=3;由于甲、乙、丙三名队员成绩的平均数分别为:,,,所以,三名队员的水平相当.故,教练A说的有道理.由于甲、乙、丙三名队员的成绩的中位数分别为:8.5;8;7.5.所以,从中位数方面分析,甲队员有优势.由于甲、乙、丙三名队员的成绩的方差分别为:,,.所以,从方差方面分析,乙队员有优势.由于甲、乙、丙三名队员的成绩的众数分别为:9;8;10.所以,从众数方面分析,丙队员有优势.故,教练B说的有道理.所以,同意教练C的观点.【题目点拨】此题主要考查数据分析的应用,解题的关键是熟知平均数、中位数、方差及众数的求解方法.23、(1)A型净水器每台的进价为2000元,B型净水器每台的进价为1800元;(2)最多可以购买A型净水器40台.【分析】(1)设A型净水器每台的进价为元,则B型净水器每台的进价为(-200)元,根据数量=总价单价,结合用5万元购进A型净水器与用4.5万元购进B型净水器的数量相等,即可得出关于的分式方程,解方程检验即可.(2)设购买A型净水器台,则购买B型净水器为(50-)台,根据购买资金=A型净水器的进价购买数量+B型净水器的进价购买数量不超过9.8万元即可得出关于的一元一次不等式,解之即可得出的取值范

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论