江苏省江阴市周庄中学2024届八年级数学第一学期期末质量检测试题含解析_第1页
江苏省江阴市周庄中学2024届八年级数学第一学期期末质量检测试题含解析_第2页
江苏省江阴市周庄中学2024届八年级数学第一学期期末质量检测试题含解析_第3页
江苏省江阴市周庄中学2024届八年级数学第一学期期末质量检测试题含解析_第4页
江苏省江阴市周庄中学2024届八年级数学第一学期期末质量检测试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省江阴市周庄中学2024届八年级数学第一学期期末质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.满足下列条件的不是直角三角形的是A.三边之比为1:2: B.三边之比1::C.三个内角之比1:2:3 D.三个内角之比3:4:52.解分式方程时,去分母化为一元一次方程,正确的是()A.x+2=3 B.x﹣2=3 C.x﹣2=3(2x﹣1) D.x+2=3(2x﹣1)3.如图,已知AD是△ABC的BC边上的高,下列能使△ABD≌△ACD的条件是()A.AB=AC B.∠BAC=90° C.BD=AC D.∠B=45°4.如图所示的方格纸,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个被涂黑的图案构成一个轴对称图形,那么涂法共有()种.A.6 B.5 C.4 D.35.如图,∠C=90°,AD平分∠BAC,DE⊥AB于点E,有下列结论:①CD=ED;②AC+BE=AB;③DA平分∠CDE;④∠BDE=∠BAC;⑤=AB:AC,其中结论正确的个数有()A.5个 B.4个C.3个 D.2个6.甲、乙两单位为爱心基金分别捐款4800元、6000元,已知甲单位捐款人数比乙单位少50人,而甲单位人均捐款数比乙单位多1元.若设甲单位有x人捐款,则所列方程是()A. B.C. D.7.如图在△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,BE与CD相交于点F,BF=2CE,H是BC边的中点,连接DH与BE相交于点G,下列结论中:①∠A=67.5°;②DF=AD;③BE=2BG;④DH⊥BC其中正确的个数是()A.1个 B.2个 C.3个 D.4个8.如图,甲、乙、丙、丁四位同学给出了四种表示大长方形面积的多项式:①(2a+b)(m+n);②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b);④2am+2an+bm+bn.你认为其中正确的有()A.①② B.③④ C.①②③ D.①②③④9.如图,一直线与两坐标轴的正半轴分别交于,两点,是线段上任意一点(不包括端点),过点分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为8,则该直线的函数表达式是()A. B. C. D.10.如图是中国古代建筑中的一个正六边形的窗户,则它的内角和为()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,直线过点A(0,2),且与直线交于点P(1,m),则不等式组>>-2的解集是_________12.已知函数y=3xn-1是正比例函数,则n的值为_____.13.计算:,则__________.14.若关于的一元二次方程有实数根,则的取值范围是_______.15.在平面直角坐标系xOy中,点P在第四象限内,且点P到x轴的距离是2,到y轴的距离是3,则点P的坐标是_____.16.计算=________________.17.在某中学举行的演讲比赛中,八年级5名参赛选手的成绩如下表所示,你根据表中提供的数据,计算出这5名选手成绩的方差_______.选手1号2号3号4号5号平均成绩得分9095■89889118.某学生数学课堂表现为90分,平时作业为92分,期末考试为85分,若这三项成绩分别按30%,30%,40%的比例记入总评成绩,则该生数学总评成绩是____分.三、解答题(共66分)19.(10分)如图在等腰三角形△ABC中,AC=BC,D、E分别为AB、BC上一点,∠CDE=∠A.(1)如图①,若BC=BD,求证:CD=DE;(2)如图②,过点C作CH⊥DE,垂足为H,若CD=BD,EH=1,求DE﹣BE的值.20.(6分)某农场急需氨肥8t,在该农场南北方向分别有A,B两家化肥公司,A公司有氨肥3t,每吨售价750元;B公司有氨肥7t,每吨售价700元,汽车每千米的运输费用b(单位:元/千米)与运输质量a(单位:t)的关系如图所示.(1)根据图象求出b关于a的函数表达式(写出自变量的取值范围).(2)若农场到B公司的路程是农场到A公司路程的2倍,农场到A公司的路程为m(km),设农场从A公司购买x(t)氨肥,购买8t氨肥的总费用为y元(总费用=购买铵肥的费用+运输费用),求出y关于x的函数表达式(m为常数),并向农场建议总费用最低的购买方案.21.(6分)如图,在中,,点是边上的动点,连接,以为斜边在的下方作等腰直角三角形.(1)填空:的面积等于;(2)连接,求证:是的平分线;(3)点在边上,且,当从点出发运动至点停止时,求点相应的运动路程.22.(8分)奉节脐橙是重庆市奉节县特产,中国地理标志产品,眼下,正值奉节脐橙销售旺季,某商家看准商机,第一次用4800元购进一批奉节脐橙,销售良好,于是第二次又用12000元购进一批奉节脐橙,但此时进价比第一次涨了2元,所购进的数量恰好是第一次购进数量的两倍.(1)求第一次购进奉节脐橙的进价.(2)实际销售中,两次售价均相同,在销售过程中,由于消费者挑选后,果品下降,第一批奉节脐橙的最后100千克八折售出,第二批奉节脐橙的最后800千克九折售出,若售完这两批奉节脐橙的获利不低于9400元,则售价至少为多少元?23.(8分)求下列各式中的.(1);(2).24.(8分)勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,当两个全等的直角三角形如图摆放时,可以用“面积法”来证明.将两个全等的直角三角形按如图所示摆放,其中∠DAB=90°,求证:a1+b1=c1.25.(10分)先化简,再求值:,其中x=1,y=2.26.(10分)如图1,在直角梯形ABCD中,AD∥BC,∠B=∠A=90°,AD=a,BC=b,AB=c,操作示例我们可以取直角梯形ABCD的一腰CD的中点P,过点P作PE∥AB,裁掉△PEC,并将△PEC拼接到△PFD的位置,构成新的图形(如图2).思考发现小明在操作后发现,该剪拼方法就是先将△PEC绕点P逆时针旋转180°到△PFD的位置,易知PE与PF在同一条直线上.又因为在梯形ABCD中,AD∥BC,∠C+∠ADP=180°,则∠FDP+∠ADP=180°,所以AD和DF在同一条直线上,那么构成的新图形是一个四边形,进而根据平行四边形的判定方法,可以判断出四边形ABEF是一个平行四边形,而且还是一个特殊的平行四边形——矩形.1.图2中,矩形ABEF的面积是;(用含a,b,c的式子表示)2.类比图2的剪拼方法,请你就图3(其中AD∥BC)和图4(其中AB∥DC)的两种情形分别画出剪拼成一个平行四边形的示意图.3.小明通过探究后发现:在一个四边形中,只要有一组对边平行,就可以剪拼成平行四边形.如图5的多边形中,AE=CD,AE∥CD,能否象上面剪切方法一样沿一条直线进行剪切,拼成一个平行四边形?若能,请你在图中画出剪拼的示意图并作必要的文字说明;若不能,简要说明理由.

参考答案一、选择题(每小题3分,共30分)1、D【解题分析】根据三角形内角和定理和勾股定理的逆定理判定是否为直角三角形.【题目详解】解:A、,符合勾股定理的逆定理,所以是直角三角形;B、,三边符合勾股定理的逆定理,所以是直角三角形;C、根据三角形内角和定理,求得第三个角为90°,所以此三角形是直角三角形;D、根据三角形内角和定理,求得各角分别为45°,60°,75°,所以此三角形不是直角三角形;故选:D.【题目点拨】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足,那么这个三角形就是直角三角形.也考查了三角形内角和定理.2、C【分析】最简公分母是2x﹣1,方程两边都乘以(2x﹣1),即可把分式方程便可转化成一元一次方程.【题目详解】方程两边都乘以(2x﹣1),得x﹣2=3(2x﹣1),故选C.【题目点拨】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.3、A【解题分析】试题分析:根据AB=AC,AD=AD,∠ADB=∠ADC=90°可得Rt△ABD和Rt△ACD全等.考点:三角形全等的判定4、A【分析】根据轴对称的概念作答,如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴进行分析,得出共有6处满足题意.【题目详解】选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置有以下几种:1处,2处,3处,4处,5处,6处,选择的位置共有6处.故选:A.【题目点拨】本题考查了轴对称图形的定义,根据定义构建轴对称图形,成为轴对称图形每种可能性都必须考虑到,不能有遗漏.5、A【分析】由在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E.可得CD=DE,继而可得∠ADC=∠ADE,又由角平分线的性质,证得AE=AD,由等角的余角相等,可证得∠BDE=∠BAC,由三角形的面积公式,可证得S△ABD:S△ACD=AB:AC.【题目详解】解:∵在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,

∴CD=ED,

故①正确;

∴∠CDE=90°−∠BAD,∠ADC=90°−∠CAD,

∴∠ADE=∠ADC,

即AD平分∠CDE,

故④正确;

∴AE=AC,

∴AB=AE+BE=AC+BE,

故②正确;

∵∠BDE+∠B=90°,∠B+∠BAC=90°,

∴∠BDE=∠BAC,

故③正确;

∵S△ABD=AB•DE,S△ACD=AC•CD,

∵CD=ED,

∴S△ABD:S△ACD=AB:AC,

故⑤正确.综上所述,结论正确的是①②③④⑤共5个

故答案为A.【题目点拨】本题考查了角平分线的性质.难度适中,注意掌握数形结合思想的应用.6、A【分析】先用x的代数式表示出甲单位人均捐款数和乙单位人均捐款数,再根据甲单位人均捐款数比乙单位多1元即可列出方程.【题目详解】解:设甲单位有x人捐款,则乙单位有(x+50)人捐款,根据题意,得.故选A.【题目点拨】本题考查了分式方程的应用,正确理解题意、找准相等关系是列出方程的关键.7、C【分析】根据已知条件得到△BCD是等腰直角三角形,由等腰直角三角形的性质得到BD=CD,由BE平分∠ABC,得到∠ABE=22.5°,根据三角形的内角和得到∠A=67.5°;故①正确;根据余角得到性质得到∠DBF=∠ACD,根据全等三角形的性质得到AD=DF,故②正确;根据BE平分∠ABC,且BE⊥AC于E,得到∠ABE=∠CBE,∠AEB=∠CEB=90°,根据全等三角形的性质得到AE=CE=AC,求得BE⊥AC,由于△BCD是等腰直角三角形,H是BC边的中点,得到DH⊥BC,故④正确;推出DH不平行于AC,于是得到BE≠2BG,故③错误.【题目详解】解:∵∠ABC=45°,CD⊥AB于D,

∴△BCD是等腰直角三角形,

∴BD=CD,

∵BE平分∠ABC,

∴∠ABE=22.5°,

∴∠A=67.5°;故①正确;

∵CD⊥AB于D,BE⊥AC于E,

∴∠DBF+∠A=90°,∠ACD+∠A=90°,

∴∠DBF=∠ACD,

在△BDF与△CDA中,∴△BDF≌△CDA(ASA),

∴AD=DF,故②正确;

∵BE平分∠ABC,且BE⊥AC于E,

∴∠ABE=∠CBE,∠AEB=∠CEB=90°,

∴在△ABE与△CBE中,

∴△ABE≌△CBE(ASA),

∴AE=CE=AC,

∵△BCD是等腰直角三角形,H是BC边的中点,

∴DH⊥BC,故④正确;

∴DH不平行于AC,

∵BH=CH,∴BG≠EG;

∴BE≠2BG,故③错误.

故选:C.【题目点拨】本题考查了等腰直角三角形的判定与性质,角平分线的性质,全等三角形的判定与性质,仔细分析图形并熟练掌握各性质是解题的关键.8、D【分析】①大长方形的长为2a+b,宽为m+n,利用长方形的面积公式,表示即可;

②长方形的面积等于左边,中间及右边的长方形面积之和,表示即可;③长方形的面积等于上下两个长方形面积之和,表示即可;④长方形的面积由6个长方形的面积之和,表示即可.【题目详解】①(2a+b)(m+n),本选项正确;

②2a(m+n)+b(m+n),本选项正确;③m(2a+b)+n(2a+b),本选项正确;④2am+2an+bm+bn,本选项正确,则正确的有①②③④.故选D.【题目点拨】此题考查了整式乘法,灵活计算面积是解本题的关键.9、A【分析】设P点坐标为(x,y),由坐标的意义可知PC=x,PD=y,根据围成的矩形的周长为8,可得到x、y之间的关系式.【题目详解】如图,过点分别作轴,轴,垂足分别为、,设点坐标为,点在第一象限,,,矩形的周长为8,,,即该直线的函数表达式是,故选.【题目点拨】本题主要考查矩形的性质及一次函数图象上点的坐标特征,直线上任意一点的坐标都满足函数关系式y=kx+b.根据坐标的意义得出x、y之间的关系是解题的关键.10、C【分析】根据多边形的内角和=180°(n-2),其中n为正多边形的边数,计算即可【题目详解】解:正六边形的内角和为:180°×(6-2)=720°故选C.【题目点拨】此题考查的是求正六边形的内角和,掌握多边形的内角和公式是解决此题的关键.二、填空题(每小题3分,共24分)11、【题目详解】解:由于直线过点A(0,2),P(1,m),则,解得,,故所求不等式组可化为:mx>(m-2)x+2>mx-2,0>-2x+2>-2,解得:1<x<2,12、1【分析】根据正比例函数:正比例函数y=kx的定义条件是:k为常数且k≠0,可得答案.【题目详解】解:∵函数y=3xn﹣1是正比例函数,∴n﹣1=1,则n=1.故答案是:1.【题目点拨】本题主要考查正比例函数的概念,掌握正比例函数的概念是解题的关键.13、-1【分析】先根据二次根式与绝对值的非负性及非负数之和为零,得到各项均为零,再列出方程组求解即可.【题目详解】∵,,∴,∴解得:∴故答案为:-1.【题目点拨】本题主要考查了二次根式的非负性、绝对值的非负性及乘方运算,根据非负数之和为零得出各项均为零是解题关键.14、且【分析】根据一元二次方程的定义和判别式的性质计算,即可得到答案.【题目详解】关于的一元二次方程有实数根∴∴,即且.【题目点拨】本题考查了一元二次方程的知识;解题的关键是熟练掌握一元二次方程的定义和判别式的性质,从而完成求解.15、(3,﹣2).【分析】根据点到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值,可得答案.【题目详解】设P(x,y),∵点P到x轴的距离为2,到y轴的距离为3,∴,∵点P在第四象限内,即:∴点P的坐标为(3,﹣2),故答案为:(3,﹣2).【题目点拨】本题主要考查平面直角坐标系中,点的坐标,掌握“点到x轴的距离是纵坐标的绝对值,到y轴的距离是横坐标的绝对值”,是解题的关键.16、【分析】在进行分式乘方运算时,先确定运算结果的符号,负数的偶数次方为正,而奇数次方为负,同时要注意运算顺序,先乘方,后乘除.【题目详解】.故答案是:xy2【题目点拨】本题考查了负整数指数幂的运算,分式的乘除法,分式的运算首先要分清运算顺序,在这个题目中,首先进行乘方运算,然后统一成乘法运算,最后进行约分运算.17、6.8;【分析】首先根据五名选手的平均成绩求得3号选手的成绩,然后利用方差公式直接计算即可.【题目详解】解:观察表格知道5名选手的平均成绩为91分,∴3号选手的成绩为:91×5-90-95-89-88=93(分),∴方差为:[(90-91)2+(95-91)2+(93-91)2+(89-91)2+(88-91)2]=6.8,故答案为:6.8.【题目点拨】本题考查了求方差,以及知道平均数求某个数据,解题的关键是掌握求方差的公式,以及正确求出3号选手的成绩.18、88.6【解题分析】解:该生数学科总评成绩是分。三、解答题(共66分)19、(1)证明见解析(1)1【解题分析】试题分析:(1)先根据条件得出∠ACD=∠BDE,BD=AC,再根据ASA判定△ADC≌△BED,即可得到CD=DE;(1)先根据条件得出∠DCB=∠CDE,进而得到CE=DE,再在DE上取点F,使得FD=BE,进而判定△CDF≌△DBE(SAS),得出CF=DE=CE,再根据CH⊥EF,运用三线合一即可得到FH=HE,最后得出DE﹣BE=DE﹣DF=EF=1HE=1.试题解析:(1)∵AC=BC,∠CDE=∠A,∴∠A=∠B=∠CDE,∴∠ACD=∠BDE,又∵BC=BD,∴BD=AC,在△ADC和△BED中,,∴△ADC≌△BED(ASA),∴CD=DE;(1)∵CD=BD,∴∠B=∠DCB,又∵∠CDE=∠B,∴∠DCB=∠CDE,∴CE=DE,如图,在DE上取点F,使得FD=BE,在△CDF和△DBE中,,∴△CDF≌△DBE(SAS),∴CF=DE=CE,又∵CH⊥EF,∴FH=HE,∴DE﹣BE=DE﹣DF=EF=1HE=1.20、(1)b=;(2)当m>时,到A公司买3t,到B公司买5t费用最低;当m=时,到A公司或B公司买费用一样;当m<时,到A公司买1t,到B公司买7t,费用最低.【解题分析】试题分析:(1)利用待定系数法分别求出当0≤a≤4和当a>4时,b关于a的函数解析式;(2)由于1≤x≤3,则到A公司的运输费用满足b=3a,到B公司的运输费用满足b=5a﹣8,利用总费用=购买铵肥费用+运输费用得到y=750x+3mx+(8﹣x)×700+[5(8﹣x)﹣8]•2m,然后进行整理,再利用一次函数的性质确定费用最低的购买方案.试题解析:(1)当0≤a≤4时,设b=ka,把(4,12)代入得4k=12,解得k=3,所以b=3a;当a>4,设,把(4,12),(8,32)代入得:,解得:,所以;∴;(2)∵1≤x≤3,∴y=750x+3mx+(8﹣x)×700+[5(8﹣x)﹣8]•2m,∴,当m>时,到A公司买3吨,到B公司买5吨,费用最低;当m<时,到A公司买1吨,到B公司买7吨,费用最低.考点:1.一次函数的应用;2.应用题;3.分段函数;4.最值问题;5.分类讨论;6.综合题.21、(1);(2)证明见解析;(3)【分析】(1)根据直角三角形的面积计算公式直接计算可得;(2)如图所示作出辅助线,证明△AEM≌△DEN(AAS),得到ME=NE,即可利用角平分线的判定证明;(3)由(2)可知点E在∠ACB的平分线上,当点D向点B运动时,点E的路径为一条直线,再根据全等三角形的性质得出CN=,根据CD的长度计算出CE的长度即可.【题目详解】解:(1)∴,故答案为:(2)连接CE,过点E作EM⊥AC于点M,作EN⊥BC于点N,∴∠EMA=∠END=90°,又∵∠ACB=90°,∴∠MEN=90°,∴∠MED+∠DEN=90°,∵△ADE是等腰直角三角形∴∠AED=90°,AE=DE∴∠AEM+∠MED=90°,∴∠AEM=∠DEN∴在△AEM与△DEN中,∠EMA=∠END=90°,∠AEM=∠DEN,AE=DE∴△AEM≌△DEN(AAS)∴ME=NE∴点E在∠ACB的平分线上,即是的平分线(3)由(2)可知,点E在∠ACB的平分线上,∴当点D向点B运动时,点E的路径为一条直线,∵△AEM≌△DEN∴AM=DN,即AC-CM=CN-CD在Rt△CME与Rt△CNE中,CE=CE,ME=NE,∴Rt△CME≌Rt△CNE(HL)∴CM=CN∴CN=,又∵∠MCE=∠NCE=45°,∠CME=90°,∴CE=,当AC=3,CD=CO=1时,CE=当AC=3,CD=CB=7时,CE=∴点E的运动路程为:,【题目点拨】本题考查了全等三角形的综合证明题,涉及角平分线的判定,几何中动点问题,全等三角形的性质与判定,解题的关键是综合运用上述知识点.22、(1)8元.(2)15.1元.【分析】(1)设该种脐橙的第一次进价是每千克x元,根据题意列出方程,解方程即可求解.(2)根据利润=售价−进价列出不等式并解答.【题目详解】(1)设该种脐橙的第一次进价是每千克x元,则第

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论