广东省中学山市小榄镇2024届八上数学期末联考模拟试题含解析_第1页
广东省中学山市小榄镇2024届八上数学期末联考模拟试题含解析_第2页
广东省中学山市小榄镇2024届八上数学期末联考模拟试题含解析_第3页
广东省中学山市小榄镇2024届八上数学期末联考模拟试题含解析_第4页
广东省中学山市小榄镇2024届八上数学期末联考模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

广东省中学山市小榄镇2024届八上数学期末联考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.电话卡上存有4元话费,通话时每分钟话费元,则电话卡上的余额(元)与通话时间(分钟)之间的函数图象是图中的()A. B.C. D.2.下列各数中,无理数的是()A.0 B.1.01001 C.π D.3.已知点P(﹣1,y1)、点Q(3,y2)在一次函数y=(2m﹣1)x+2的图象上,且y1>y2,则m的取值范围是()A.m< B.m> C.m≥1 D.m<14.用三角尺可按下面方法画角平分线:在已知的的两边上,分别截取,再分别过点、作、的垂线,交点为,画射线,则平分.这样画图的主要依据是()A. B. C. D.5.把一些笔记本分给几个学生,如果每人分3本,那么余8本;如果前面的每个学生分5本,那么最后一人就分不到3本,共有学生人数为()A.6 B.5 C.6或5 D.46.在平面直角坐标系中,点(2,3)关于y轴对称的点的坐标是()A.(﹣2,﹣3) B.(2,﹣3) C.(﹣2,3) D.(2,3)7.如图,在△ABC中,AD是BC边上的高,且∠ACB=∠BAD,AE平分∠CAD,交BC于点E,过点E作EF∥AC,分别交AB、AD于点F、G.则下列结论:①∠BAC=90°;②∠AEF=∠BEF;③∠BAE=∠BEA;④∠B=2∠AEF,其中正确的有()A.4个 B.3个 C.2个 D.1个8.下列命题中不正确的是()A.全等三角形的对应边相等 B.全等三角形的面积相等C.全等三角形的周长相等 D.周长相等的两个三角形全等9.下列各命题的逆命题是真命题的是A.对顶角相等 B.全等三角形的对应角相等C.相等的角是同位角 D.等边三角形的三个内角都相等10.下面四个交通标志图中为轴对称图形的是()A. B. C. D.11.一次函数y=﹣2x+2的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.已知某多边形的内角和比该多边形外角和的2倍多,则该多边形的边数是()A.6 B.7 C.8 D.9二、填空题(每题4分,共24分)13.若关于x的方程无解,则m的值是____.14.若,且,则____________.15.比较大小:.16.某汽车厂改进生产工艺后,每天生产的汽车比原来每天生产的汽车多6辆,那么现在15天的产量就超过了原来20天的产量,设原来每天生产汽车辆,则列出的不等式为________.17.将二次根式化简为__________.18.先化简,再求值:,其.三、解答题(共78分)19.(8分)求证:三角形三个内角的和是180°20.(8分)如图,已知,D、E分别是△ABC的边AB、AC上的点,DE交BC的延长线于F,∠B=67°,∠ACB=74°,∠AED=48°,求∠F和∠BDF的度数.21.(8分)如图,已知中,,,点是的中点,如果点在线段上以的速度由点向点移动,同时点在线段上由点向点以的速度移动,若、同时出发,当有一个点移动到点时,、都停止运动,设、移动时间为.(1)求的取值范围.(2)当时,问与是否全等,并说明理由.(3)时,若为等腰三角形,求的值.22.(10分)计算:=________.23.(10分)在Rt△ABC中,AB=AC,D为BC边上一点(不与点B,C重合),将线段AD绕点A逆时针旋转90°得到AE.(1)连接EC,如图①,试探索线段BC,CD,CE之间满足的等量关系,并证明你的结论;(2)连接DE,如图②,求证:BD2+CD2=2AD2(3)如图③,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°,若BD=,CD=1,则AD的长为▲.(直接写出答案)24.(10分)列方程解应用题:第19届亚洲运动会将于2022年9月10日至25日在杭州举行,杭州奥体博览城将成为杭州2022年亚运会的主场馆,某工厂承包了主场馆建设中某一零件的生产任务,需要在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数.(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.25.(12分)如图1,的边在直线上,,且的边也在直线上,边与边重合,且.(1)直接写出与所满足的数量关系:_________,与的位置关系:_______;(2)将沿直线向右平移到图2的位置时,交于点Q,连接,求证:;(3)将沿直线向右平移到图3的位置时,的延长线交的延长线于点Q,连接,试探究与的数量和位置关系?并说明理由.26.学校以班为单位举行了“书法、版画、独唱、独舞”四项预选赛,参赛总人数达480人之多,下面是七年级一班此次参赛人数的两幅不完整的统计图,请结合图中信息解答下列问题:(1)求该校七年一班此次预选赛的总人数;(2)补全条形统计图,并求出书法所在扇形圆心角的度数;(3)若此次预选赛一班共有2人获奖,请估算本次比赛全学年约有多少名学生获奖?

参考答案一、选择题(每题4分,共48分)1、D【分析】根据当通话时间为0时,余额为4元;当通话时间为10时,余额为0元.据此判断即可.【题目详解】由题意可知:当通话时间为0时,余额为4元;当通话时间为10时,余额为0元.

∴,

故只有选项D符合题意.

故选:D.【题目点拨】本题主要考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.2、C【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【题目详解】解:A.0是整数,属于有理数;B.1.01001是有限小数,属于有理数;C.π是无理数;D.,是整数,属于有理数.故选:C.【题目点拨】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有ππ的数.3、A【解题分析】分析:由题目条件可判断出一次函数的增减性,则可得到关于m的不等式,可求得m的取值范围.详解:∵点P(−1,y1)、点Q(3,y2)在一次函数y=(2m−1)x+2的图象上,∴当−1<3时,由题意可知y1>y2,∴y随x的增大而减小,∴2m−1<0,解得故选A.点睛:考查一次函数的性质,,一次函数当时,y随着x的增大而增大,当时,y随着x的增大而减小.4、D【分析】直接利用直角三角形全等的判定HL定理,可证Rt△OMP≌Rt△ONP.【题目详解】由题意得,OM=ON,∠OMP=∠ONP=90°,OP=OP在Rt△OMP和Rt△ONP中∴Rt△OMP≌Rt△ONP(HL)∴∠AOP=∠BOP故选:D【题目点拨】本题主要考查全等三角形的判定方法和全等三角形的性质,掌握全等三角形的判定方法之一:斜边及一条直角边对应相等的两个直角三角形全等.5、A【分析】设共有学生x人,则书共(3x+8)本,再根据题意列出不等式,解出来即可.【题目详解】设共有学生x人,0≤(3x+8)-5(x-1)<3,解得5<x≤6.5,故共有学生6人,故选A.【题目点拨】此题主要考察不等式的应用.6、C【分析】平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y),即关于纵轴的对称点,纵坐标不变,横坐标变成相反数.【题目详解】解:点(2,3)关于y轴对称的点的坐标是(﹣2,3).故选C.【题目点拨】本题考查关于x轴、y轴对称的点的坐标,利用数形结合思想解题是关键.7、B【解题分析】利用高线和同角的余角相等,三角形内角和定理即可证明①,再利用等量代换即可得到③④均是正确的,②缺少条件无法证明.【题目详解】解:由已知可知∠ADC=∠ADB=90°,∵∠ACB=∠BAD∴90°-∠ACB=90°-∠BAD,即∠CAD=∠B,∵三角形ABC的内角和=∠ACB+∠B+∠BAD+∠CAD=180°,∴∠CAB=90°,①正确,∵AE平分∠CAD,EF∥AC,∴∠CAE=∠EAD=∠AEF,∠C=∠FEB=∠BAD,②错误,∵∠BAE=∠BAD+∠DAE,∠BEA=∠BEF+∠AEF,∴∠BAE=∠BEA,③正确,∵∠B=∠DAC=2∠CAE=2∠AEF,④正确,综上正确的一共有3个,故选B.【题目点拨】本题考查了三角形的综合性质,高线的性质,平行线的性质,综合性强,难度较大,利用角平分线和平行线的性质得到相等的角,再利用等量代换推导角之间的关系是解题的关键.8、D【解题分析】A.全等三角形的对应边相等,正确,故本选项错误;B.全等三角形的面积相等,正确,故本选项错误;C.全等三角形的周长相等,正确,故本选项错误;D.周长相等的两个三角形全等,错误,故本选项正确,故选D.9、D【分析】分别写出四个命题的逆命题:相等的角为对顶角;对应角相等的两三角形全等;同位角相等;三个角都相等的三角形为等边三角形;然后再分别根据对顶角的定义对第一个进行判断;根据三角形全等的判定方法对第二个进行判断;根据同位角的性质对第三个进行判断;根据等边三角形的判定方法对第四个进行判断.【题目详解】A、“对顶角相等”的逆命题为“相等的角为对顶角”,此逆命题为假命题,所以A选项错误;B、“全等三角形的对应角相等”的逆命题为“对应角相等的两三角形全等”,此逆命题为假命题,所以B选项错误;C、“相等的角是同位角”的逆命题为“同位角相等”,此逆命题为假命题,所以C选项错误;

D、“等边三角形的三个内角都相等”的逆命题为“三个角都相等的三角形为等边三角形”,此逆命题为真命题,所以D选项正确.故选D.【题目点拨】本题考查了命题与定理:判断事物的语句叫命题;题设与结论互换的两个命题互为逆命题;正确的命题叫真命题,错误的命题叫假命题;经过推论论证得到的真命题称为定理.10、D【分析】根据“一个图形沿着某条直线对折,直线两旁的部分能够互相重合”求解.【题目详解】A、不是轴对称图形,故本选项错误;

B、不是轴对称图形,故本选项错误;

C、不是轴对称图形,故本选项错误;

D、是轴对称图形,故本选项正确.

故选D.【题目点拨】本题考查的是轴对称图形,掌握轴对称图形的定义是关键.11、C【分析】先根据一次函数的系数判断出函数图象所经过的象限,由此即可得出结论.【题目详解】解:∵一次函数y=﹣2x+2中,k=﹣2<0,b=2>0,∴此函数的图象经过一、二、四象限,不经过第三象限.故选:C.【题目点拨】本题考查一次函数的图象与系数的关系,熟知当k<0,b>0时,一次函数y=kx+b的图象在一、二、四象限是解题关键.12、B【分析】多边形的内角和比外角和的2倍多180°,而多边形的外角和是360°,则内角和是900度,n边形的内角和可以表示成(n-2)•180°,设这个多边形的边数是n,就得到方程,从而求出边数.【题目详解】解:根据题意,得

(n-2)•180=360×2+180,

解得:n=1.

则该多边形的边数是1.

故选:B.【题目点拨】此题主要考查了多边形内角和定理和外角和定理,只要结合多边形的内角和公式寻求等量关系,构建方程即可求解.二、填空题(每题4分,共24分)13、3【分析】先去分母求出x的解,由增根x=4即可求出m的值.【题目详解】解方程m+1-x=0,解得x=m+1,∵增根x=4,即m+1=4∴m=3.【题目点拨】此题主要考查分式方程的增根,解题的关键是熟知解分式方程的方法.14、27【分析】将x+y的值代入由(x+3)(y+3)=26变形所得式子xy+3(x+y)=17,求出xy的值,再将xy、x+y的值代入原式=(x+y)2+xy计算可得.【题目详解】解:∵(x+3)(y+3)=26,∴xy+3x+3y+9=26,则xy+3(x+y)=17,将x+y=5代入得xy+15=17,

则xy=2,∴=(x+y)2+xy=25+2=27.故答案为:27.【题目点拨】本题主要考查多项式乘多项式,解题的关键是掌握多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.15、>【解题分析】解:∵,,∴.故答案为>.16、【分析】首先根据题意可得改进生产工艺后,每天生产汽车(x+6)辆,根据关键描述语:现在15天的产量就超过了原来20天的产量列出不等式即可.【题目详解】解:设原来每天最多能生产x辆,由题意得:

15(x+6)>20x,故答案为:【题目点拨】此题主要考查了由实际问题抽象出一元一次不等式,关键是正确理解题意,抓住关键描述语.17、【分析】根据二次根式的性质进行解答即可.【题目详解】.故答案为:.【题目点拨】本题考查的是二次根式的性质与化简,本题要注意分母有理化.18、,【分析】根据分式混合运算、二次根式的性质分析,即可得到答案.【题目详解】当时故答案为:,.【题目点拨】本题考查了分式和二次根式的知识;解题的关键是熟练掌握分式混合运算、二次根式的性质,从而完成求解.三、解答题(共78分)19、见解析【解题分析】分析:根据题目写出已知,求证,证明即可.详解:已知:的三个内角分别为;

求证:.

证明:过点A作直线MN,使MN∥BC.

∵MN∥BC,

∴∠B=∠MAB,∠C=∠NAC(两直线平行,内错角相等)

∵∠MAB+∠NAC+∠BAC=180°(平角定义)

∴∠B+∠C+∠BAC=180°(等量代换)

即∠A+∠B+∠C=180°.点睛:考查平行线的性质,过点A作直线MN,使MN∥BC.是解题的关键.20、∠F=26°,∠BDF=87°.【分析】根据对顶角相等可知∠CEF=∠AED;又∠ACB是△CEF的外角,所以根据外角的性质求出∠F;根据三角形内角和定理可求∠BDF的度数.【题目详解】解:∵∠CEF=∠AED=48°,∠ACB=∠CEF+∠F,∴∠F=∠ACB﹣∠CEF=74°﹣48°=26°;∵∠BDF+∠B+∠F=180°,∴∠BDF=180°﹣∠B﹣∠F=180°﹣67°﹣26°=87°.【题目点拨】此题考查三角形内角和定理和三角形的外角的性质,正确识图运用定理进行推理计算是关键.21、(1);(2)时,与全等,证明见解析;(3)当或时,为等腰三角形【分析】(1)由题意根据图形点的运动问题建立不等式组,进行分析求解即可;(2)根据题意利用全等三角形的判定定理(SAS),进行分析求证即可;(3)根据题意分和以及三种情况,根据等腰三角形的性质进行分析计算.【题目详解】(1)依题意,,.(2)时,与全等,证明:时,,,在和中,∵,,点是的中点,,,,(SAS).(3)①当时,有;②当,有,∵,∴(舍去);③当时有,∴;综上,当或时,为等腰三角形.【题目点拨】本题考查等腰三角形相关的动点问题,熟练掌握等腰三角形的性质和全等三角形的判定以及运用数形结合的思维将动点问题转化为代数问题进行分析是解题的关键.22、2【分析】利用同底数幂的乘法运算将原式变形,再利用积的乘方求出结果.【题目详解】解:(-2)2020)2019=22020)2019=222019)2019=2)2019=2=2【题目点拨】此题考察整式乘法公式的运用,准确变形是解题的关键.23、(1)BC=DC+EC,理由见解析;(2)见解析;(3)【分析】(1)根据本题中的条件证出△BAD≌△CAE(SAS),得到BD=CE,再根据条件即可证出结果.(2)由(1)中的条件可得∠DCE=∠ACE+∠ACB=90°,所以CE2+CD2=ED2,可推出BD2+CD2=,再根据勾股定理可得出结果.(3)作AE⊥AD,使AE=AD,连接CE,DE,可推出△BAD≌△CAE(SAS),所以BD=CE=,再根据勾股定理求得DE.【题目详解】解:(1)结论:BC=DC+EC理由:如图①中,∵∠BAC=∠DAE=90°,∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE,在△BAD和△CAE中,,∴△BAD≌△CAE(SAS);∴BD=CE,∴BC=BD+CD=EC+CD,即:BC=DC+EC.(2)BD2+CD2=2AD2,理由如下:连接CE,由(1)得,△BAD≌△CAE,∴BD=CE,∠ACE=∠B,∴∠DCE=∠ACE+∠ACB=90°,∴CE2+CD2=ED2,即:BD2+CD2=ED2;在Rt△ADE中,AD2+AE2=ED2,又AD=AE,∴ED2=2AD2;∴BD2+CD2=2AD2;(3)AD的长为(学生直接写出答案).作AE⊥AD,使AE=AD,连接CE,DE,∵∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,AB=AC,∠BAD=∠CAE,AD=AE.∴△BAD≌△CAE(SAS),∴BD=CE=,∵∠ADC=45°,∠EDA=45°,∴∠EDC=90°,∴DE2=CE2-CD2=()2-12=12,∴DE=2,∵∠DAE=90°,AD2+AE2=DE2,∴AD=.【题目点拨】本题属于几何变换综合题,考查了等腰直角三角形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.24、(1)原计划每天生产的零件2400个,规定的天数是10天;(2)原计划安排的工人人数480人.【分析】(1)根据题意可设原计划每天生产的零件x个,根据时间是一定的,列出方程求得原计划每天生产的零件个数,再根据工作时间=工作总量÷工作效率,即可求得规定的天数;

(2)设原计划安排的工人人数为y人,根据等量关系:恰好提前两天完成2400个零件的生产任务,列出方程求解即可.【题目详解】(1)解:设原计划每天生产的零件x个,由题意得,得:x=2400经检验,x=2400是原方程的根,且符合题意.∴规定的天数为24000÷2400=10(天).答:原计划每天生产的零件2400个,规定的天数是10天;(2)设原计划安排的工人人数为y人,依题意有[5×20×(1+20%)×+2400]×(10﹣2)=24000,解得y=480,经检验,y=480是原方程的根,且符合题意.答:原计划安排的工人人数480人.【题目点拨】本题考查了分式方程的应用,一元一次方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.25、(1)AB=AP

,AB⊥AP

;(2)证明见解析;(3)AP=BQ,AP⊥BQ,证明见解析.【分析】(1)根据等腰直角三角形的性质可得∠BAP=45°+45°=90°,根据垂直平分线的性质可得AB=AP;(2)要证BQ=AP,可以转化为证明Rt△BCQ≌Rt△ACP;(3)类比(2)的证明就可以得到,证明垂直时,延长QB交AP于点N,则∠PBN=∠CBQ,借助全等得到的角相等,得出∠APC+∠PBN=90°,进一步可得出结论..【题目详解】解:(1)∵AC⊥BC且AC=BC,

∴△ABC为等腰直角三角形,∠ACB=90°,

∴∠BAC=∠ABC=(180°-∠ACB)=45°,

∵,∠EFP=180°-∠ACB=90°,∴△EFP为等腰直角三角形,BC=AC=CP,∴∠PEF=45°,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论