版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省农安县合隆镇中学2024届数学八上期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列说法正确的是()A.命题:“等腰三角形两腰上的中线相等”是真命题 B.假命题没有逆命题C.定理都有逆定理 D.不正确的判断不是命题2.某人到瓷砖商店去购买一种多边形形状的瓷砖,用来铺设无缝地板,他购买的瓷砖形状不可以是()A.正三角形 B.矩形 C.正八边形 D.正六边形3.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE的度数是()A.20° B.35° C.40° D.70°4.若是关于的完全平方式,则的值为()A.7 B.-1 C.8或-8 D.7或-15.如图,在六边形中,若,与的平分线交于点,则等于()A. B. C. D.6.若在实数范围内有意义,则x满足的条件是()A.x≥ B.x≤ C.x= D.x≠7.如图,,是角平分线上一点,,垂足为,点是的中点,且,如果点是射线上一个动点,则的最小值是()A.1 B. C.2 D.8.的整数部分是,小数部分是,则的值是()A.7 B.1 C. D.109.如果把分式中的x,y同时扩大为原来的3倍,那么该分式的值()A.不变 B.扩大为原来的3倍C.缩小为原来的 D.缩小为原来的10.如图,点是中、的角平分线的交点,,则的度数是()A. B. C. D.11.如果分式有意义,则x的取值范围是()A.x>3 B.x≠3 C.x<3 D.x>012.如图,正五边形ABCDE,BG平分∠ABC,DG平分正五边形的外角∠EDF,则∠G=()A.36°B.54°C.60°D.72°二、填空题(每题4分,共24分)13.如图,,,则__________°.14.某学生数学学科课堂表现为分,平时作业为分,期末考试为分,若这三项成绩分别按,,的比例计入总评成绩,则该学生数学学科总评成绩是_______分.15.如图,△ABC的三边AB,BC,CA的长分别为14,12,8,其三条角平分线的交点为O,则_____.16.如图,BE平分∠ABC,CE平分外角∠ACD,若∠A=52°,则∠E的度数为_____.17.等腰三角形一腰上的高与另一腰的夹角为20°,则该等腰三角形的底角的度为______.18.如图,以数轴的单位长度线段为边做一个正方形以表示数2的点为圈心,正方形对角线长为半径画半圆,交数轴于点A和点B,则点A表示的数是_________三、解答题(共78分)19.(8分)某校计划组织1920名师生研学,经过研究,决定租用当地租车公司一共40辆A、B两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息.(注:载客量指的是每辆客最多可载该校师生的人数)设学校租用A型号客车x辆,租车总费用为y元.(1)求y与x的函数关系式,并求出x的取值范围;(2)若要使租车总费用不超过25200元,一共有几种租车方案?哪种租车方案最省钱,并求此方案的租车费用.20.(8分)某校八年级班学生利用双休日时间去距离学校的博物馆参观.一部分学生骑自行车先走,过了后,其余学生乘汽车沿相同路线出发,结果他们同时到达,己知汽车的速度是骑车学生速度的倍,求骑车学生的速度和汽车的速度.21.(8分)如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC.(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使△BPN的面积等于△BCM面积的?若存在,请求出点N的坐标;若不存在,请说明理由.22.(10分)以下是小嘉化简代数式的过程.解:原式……①……②……③(1)小嘉的解答过程在第_____步开始出错,出错的原因是_____________________;(2)请你帮助小嘉写出正确的解答过程,并计算当时代数式的值.23.(10分)如图,四边形ABCD中,AC=5,AB=4,CD=12,AD=13,∠B=90°.(1)求BC边的长;(2)求四边形ABCD的面积.24.(10分)已知,如图,和都是等边三角形,且点在上.(1)求证:(2)直接写出和之间的关系;25.(12分)已知:如图,点A是线段CB上一点,△ABD、△ACE都是等边三角形,AD与BE相交于点G,AE与CD相交于点F.求证:△AGF是等边三角形.26.如图,在Rt△ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B,求证:CD⊥AB.
参考答案一、选择题(每题4分,共48分)1、A【分析】利用命题的有关定义及性质、等腰三角形的性质逐项判断即可.【题目详解】A、如图,是等腰三角形,,CE、BD分别是AB、AC上的中线则又,则此项正确B、每一个命题都有逆命题,此项错误C、定理、逆定理都是真命题,因此,当定理的逆命题是假命题时,定理就没有逆定理,此项错误D、不正确的判断是命题,此项错误故选:A.【题目点拨】本题考查了命题的有关定义及性质、等腰三角形的性质,掌握理解各定义与性质是解题关键.2、C【解题分析】因为正八边形的每个内角为,不能整除360度,故选C.3、B【分析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.再利用角平分线定义即可得出∠ACE=∠ACB=35°.【题目详解】∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=(180°-∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=∠ACB=35°.故选B.【题目点拨】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.4、D【分析】利用完全平方公式的结构特征判断即可确定出m的值.【题目详解】∵x2−2(m−3)x+16是关于x的完全平方式,∴m−3=±4,解得:m=7或−1,故选:D.【题目点拨】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.5、D【分析】先根据六边形的内角和,求出∠DEF与∠AFE的度数和,进而求出∠GEF与∠GFE的度数和,然后在△GEF中,根据三角形的内角和定理,求出∠G的度数,即可.【题目详解】∵六边形ABCDEF的内角和=(6−2)×180°=720°,
又∵∠A+∠B+∠C+∠D=520°,
∴∠DEF+∠AFE=720°−520°=200°,
∵GE平分∠DEF,GF平分∠AFE,
∴∠GEF+∠GFE=(∠DEF+∠AFE)=×200°=100°,
∴∠G=180°−100°=80°.
故选:D.【题目点拨】本题主要考查多边形的内角和公式,三角形内角和定理以及角平分线的定义,掌握多边形的内角和公式,是解题的关键.6、C【解题分析】由题意可知:,解得:x=,故选C.【题目点拨】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.7、C【分析】根据角平分线的定义可得∠AOP=∠AOB=30°,再根据直角三角形的性质求得PD=OP=1,然后根据角平分线的性质和垂线段最短得到结果.【题目详解】∵P是∠AOB角平分线上的一点,∠AOB=60°,∴∠AOP=∠AOB=30°,∵PD⊥OA,M是OP的中点,DM=1,∴OP=1DM=4,∴PD=OP=1,∵点C是OB上一个动点,∴PC的最小值为P到OB距离,∴PC的最小值=PD=1.故选:C.【题目点拨】本题考查了角平分线上的点到角的两边距离相等的性质,直角三角形的性质,熟记性质并作出辅助线构造成直角三角形是解题的关键.8、B【分析】由的整数部分是,小数部分是,即可得出x、y的值,然后代入求值即可.【题目详解】解:∵,∴的整数部分,小数部分,∴.故选:B.【题目点拨】本题主要考查实数,关键是运用求一个平方根的整数部分和小数部分的方法得出未知数的值,然后代入求值即可.9、C【分析】根据题意和分式的基本性质即可得出结论.【题目详解】解:即该分式的值缩小为原来的故选C.【题目点拨】此题考查的是分式法基本性质的应用,掌握分式的基本性质是解决此题的关键.10、D【分析】根据点P是△ABC中∠ABC、∠ACB的角平分线的交点,得出∠ABP+∠ACP=∠PBC+∠PCB,利用三角形的内角和等于180°,可求出∠ABC+∠ACB的和,从而可以得到∠PBC+∠PCB,则∠BPC即可求解.【题目详解】解:∵点P是△ABC中∠ABC、∠ACB的角平分线的交点∴∠ABP=∠PBC,∠ACP=∠PCB∴∠ABP+∠ACP=∠PBC+∠PCB∵∠A=118°∴∠ABC+∠ACB=62°∴∠PBC+∠PCB=62°÷2=31°∴∠BPC=180°-31°=149°故选:D.【题目点拨】本题主要考查的是三角形角平分线的性质以及三角形的内角和性质,正确的掌握以上两个性质是解题的关键.11、B【分析】分式有意义的条件是分母不等于零,从而得到x﹣2≠1.【题目详解】∵分式有意义,∴x﹣2≠1.解得:x≠2.故选:B【题目点拨】本题主要考查的是分式有意义的条件,掌握分式有意义时,分式的分母不为零是解题的关键.12、B【分析】先求出正五边形一个的外角,再求出内角度数,然后在四边形BCDG中,利用四边形内角和求出∠G.【题目详解】∵正五边形外角和为360°,∴外角,∴内角,∵BG平分∠ABC,DG平分正五边形的外角∠EDF∴,在四边形BCDG中,∴故选B.【题目点拨】本题考查多边形角度的计算,正多边形可先计算外角,再计算内角更加快捷简便.二、填空题(每题4分,共24分)13、1【分析】根据全等三角形的性质得出∠E=∠B=120°,再根据三角形的内角和定理求出∠D的度数即可.【题目详解】解:∵△ABC≌△DEF,
∴∠E=∠B=120°,
∵∠F=20°,
∴∠D=180°-∠E-∠F=1°,
故答案为1.【题目点拨】本题考查了全等三角形的性质和三角形的内角和定理的应用,注意:全等三角形的对应角相等,对应边相等.14、92.1【分析】根据加权平均数的计算方法可以求得该生数学学科总评成绩,从而可以解答本题.【题目详解】解:由题意可得,95×30%+92×30%+90×40%=92.1(分),故答案为:92.1.【题目点拨】本题考查加权平均数,解答本题的关键是明确加权平均数的计算方法.15、;【分析】利用角平分线的性质,可得知△BCO,△ACO和△ABO中BC,AC和AB边上的高相等,根据三角形的面积比即为底的比,由此得知结果.【题目详解】如图,过O作OD⊥AB交AB于D,过O作OE⊥AC交AC于E,过O作OF⊥BC交BC于F,因为点O为三条角平分线的交点,所以OD=OE=OF,所以.故答案为:.【题目点拨】考查角平分线的性质,学生熟练掌握角平分线到角两边的距离相等这一性质是本题解题关键,利用性质找到面积比等于底的比,从而解题.16、26°【分析】根据三角形的外角等于和它不相邻的两个内角的和即可得答案.【题目详解】∵BE平分∠ABC,CE平分外角∠ACD,∴∠EBC=∠ABC,∠ECD=∠ACD,∴∠E=∠ECD﹣∠EBC=(∠ACD﹣∠ABC)∵∠ACD-∠ABC=∠A,∴∠E=∠A=×52°=26°故答案为26°【题目点拨】本题考查三角形外角性质,三角形的一个外角,等于和它不相邻的两个内角的和;熟练掌握外角性质是解题关键.17、55°或35°.【分析】根据等腰三角形的性质及三角形内角和定理进行分析,注意分类讨论思想的运用.【题目详解】如图①,∵AB=AC,∠ABD=20°,BD⊥AC于D,∴∠A=70°,∴∠ABC=∠C=(180°-70°)÷2=55°;如图②,∵AB=AC,∠ABD=20°,BD⊥AC于D,∴∠BAC=20°+90°=110°,∴∠ABC=∠C=(180°-110°)÷2=35°.故答案为55°或35°.【题目点拨】此题主要考查等腰三角形的性质,三角形内角和定理及三角形外角的性质,进行分类讨论是解题的关键.18、【分析】由图可知,正方形的边长是1,所以对角线的长为,所以点A表示的数为2减去圆的半径即可求得.【题目详解】由题意可知,正方形对角线长为,所以半圆的半径为,则点A表示的数为.故答案为.【题目点拨】本题主要考查了数轴的基本概念,圆的基本概念以及正方形的性质,根据题意求出边长是解题的关键.三、解答题(共78分)19、(1)15≤x<40且x为整数;(2)若要使租车总费用不超过25200元,一共有6种方案,当租用A型号客车15辆,B型号客车25辆时最省钱,此时租车总费用为24700元。【分析】(1)根据租车总费用=A、B两种车的费用之和,列出函数关系式即可;
(2)列出不等式组,求出自变量x的取值范围,利用函数的性质即可解决问题;【题目详解】解:(1)y=680x+580(40-x)=100x+23200由53x+45(40-x)≥1920解得x≥15,∵x<40且x为整数,∴15≤x<40且x为整数(2)由题意得:100x+23200≤25200,解得x≤20,由(1)15≤x<40且x为整数∴15≤x≤20且x为整数,故有6种方案∵100>0,∴y随x的增大而增大,∴当x=15时,y最小值=100×15+23200=24700(元)答:若要使租车总费用不超过25200元,一共有6种方案,当租用A型号客车15辆,B型号客车25辆时最省钱,此时租车总费用为24700元.【题目点拨】本题考查一次函数的应用、一元一次不等式的应用等知识,解题的关键是理解题意,学会利用函数的性质解决最值问题.20、骑车学生的速度为:15km/h,汽车的速度为:30km/h【分析】已知路程,求速度,设汽车学生的速度为xkm/h,则汽车的速度为2xkm/h,根据题意可得,乘坐汽车比骑自行车少用29分钟,据此列方程求解.【题目详解】解:设汽车学生的速度为xkm/h,则汽车的速度为2xkm/h,由题意可得,解得:x=15经检验:x=15是原方程的解,则2x=30答:骑车学生的速度为:15km/h,汽车的速度为30km/h.【题目点拨】本题主要考查分式方程的应用,关键要掌握列分式方程的一般步骤:即审清题意,弄清已知量和未知量、找等量关系、设未知数、列方程、解方程、验根、写出答案.21、(1)C(﹣3,1),直线AC:y=x+2;(2)证明见解析;(3)N(﹣,0).【分析】(1)作CQ⊥x轴,垂足为Q,根据条件证明△ABO≌△BCQ,从而求出CQ=OB=1,可得C(﹣3,1),用待定系数法可求直线AC的解析式y=x+2;(2)作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,证明△BCH≌△BDF,△BOE≌△DGE,可得BE=DE;(3)先求出直线BC的解析式,从而确定点P的坐标,假设存在点N使△BPN的面积等于△BCM面积的,然后可求出BN的长,比较BM,BN的大小,判断点N是否在线段BM上即可.【题目详解】解:(1)如图1,作CQ⊥x轴,垂足为Q,∴∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,∴∠OAB=∠QBC,又∵AB=BC,∠AOB=∠Q=90°,∴△ABO≌△BCQ,∵BQ=AO=2,OQ=BQ+BO=3,CQ=OB=1,∴C(﹣3,1),由A(0,2),C(﹣3,1)可知,直线AC:y=x+2;(2)如图2,作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,∵AC=AD,AB⊥CB,∵BC=BD,∴△BCH≌△BDF,∴BF=BH=2,∴OF=OB=1,∵DG=OB,∴△BOE≌△DGE,∴BE=DE;(3)如图3,直线BC:y=﹣x﹣,P(,k)是线段BC上一点,∴P(﹣,),由y=x+2知M(﹣6,0),∴BM=5,则S△BCM=,则BN·×,∴BN=,ON=,∴BN<BM,∴点N在线段BM上,∴N(﹣,0).考点:1.等腰直角三角形的性质;2.全等三角形的判定与性质;3.待定系数法求解析式.22、(1)②;去括号时-y2没变号;(2)解答过程见解析,代数式化简为3y2-4xy,值为1【分析】(1)依据完全平方公式、平方差公式、去括号法则、合并同类项法则进行判断即可;
(2)依据去括号法则、合并同类项法则进行化简,然后将4x=3y代入,最后,再合并同类项即可.【题目详解】解:(1)②出错,原因:去括号时-y2没变号;
故答案为:②;去括号时-y2没变号.
(2)正确解答过程:
原式=(x2-4xy+4y2)-(x2-y2)-2y2,
=x2-4xy+4y2-x2+y2-2y2,
=3y2-4xy.
当4x=3y时,原式3y2-3y2=1.【题目点拨】本题主要考查的是整式的混合运算,熟练掌握相关法则是解题的关键.23、(1)3;(2)1.【分析】(1)先根据勾股定理求出BC的长度;
(2)根据勾股定理的逆定理判断出△ACD是直角三角形,四边形ABCD的面积等于△ABC和△ACD的面积和,再利用三角形的面积公式求解即可.【题目详解】解:(1)∵∠ABC=90°,AC=5,AB=4
∴BC=,(2)在△ACD中,AC2+CD2=52+122=169AD2=132=169,∴AC2+CD2=AD2,
∴△ACD是直角三角形,
∴∠ACD=90°;由图形可知:S四边形ABCD=S△ABC+S△ACD=AB•BC+AC•CD,
=×3×4+×5×12,
=1.【题目点拨】本题考查的是勾股定理的逆定理及三角形的面积,能根据勾股定理的逆定理判断出△ACD的形状是解答此题的关键.24、(1)证明见解析;(2)AE+AD=AB【分析】(1)利用等边三角形的性质,证明△DBC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 曲江景区旅游推广计划书
- 学前安全课件
- 儿童教育机构员工手册
- 质量管理体系承诺书协议书
- 拳击馆租赁合同适用于拳击租赁
- 零售行业总经理助理聘用函
- 建筑材料采购合同管理要点
- 电信公司职员工作证使用办法
- 服装设计师聘用合同
- 美容院库存预警系统预防与应对
- 电子课件《英语(第一册)(第三版)》A013820英语第一册第三版Unit4
- 健康饮食有机蔬菜宣传画册模板课件
- 请求页式存储管理中常用页面置换算法模拟
- 织物组织分析—双层接结组织
- 20000m3储罐施工方案
- 其他专技、管理服务岗位聘期考核表
- 靶向药物治疗与护理ppt课件
- 商业发票INVOICE模板
- 铝表面阳极氧化处理方法及缺陷分析
- 直线训练仪使用技术
- (完整版)Tinetti评估表
评论
0/150
提交评论