




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
福建省龙岩市第五中学2024届八年级数学第一学期期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图①,把4个长为a,宽为b的长方形拼成如图②所示的图形,且a=3b,则根据这个图形不能得到的等式是()A.(a+b)2=4ab+(a-b)2 B.4b2+4ab=(a+b)2C.(a-b)2=16b2-4ab D.(a-b)2+12a2=(a+b)22.如图所示:数轴上点A所表示的数为a,则a的值是()A.+1 B.-1 C.-+1 D.--13.下列等式中,正确的是().A. B. C. D.4.将一组数,2,,2,,…,2,按下列方式进行排列:,2,,2,;2,,4,3,2;…若2的位置记为(1,2),2的位置记为(2,1),则这个数的位置记为()A.(5,4) B.(4,4) C.(4,5) D.(3,5)5.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E.若∠E=35°,则∠BAC的度数为()A.40° B.45° C.60° D.70°6.如图,已知,则一定是的()A.角平分线 B.高线 C.中线 D.无法确定7.给出下列数:,其中无理数有()A.1个 B.2个 C.3个 D.4个8.下列各式:(1﹣x),,,,其中分式共有()A.1个 B.2个 C.3个 D.4个9.如图所示,已知点A(﹣1,2)是一次函数y=kx+b(k≠0)的图象上的一点,则下列判断中正确的是()A.y随x的增大而减小 B.k>0,b<0C.当x<0时,y<0 D.方程kx+b=2的解是x=﹣110.的值是()A.0 B.1 C. D.以上都不是二、填空题(每小题3分,共24分)11.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则点B3的坐标是_____,点Bn的坐标是_____.12.已知等腰三角形的两边长分别为4和8,则它的周长是_______.13.若m+n=3,则代数式m2+2mn+n2-6的值为__________.14.对于实数x,我们规定[X)表示大于x的最小整数,如[4)═5,[)=2,[﹣2.5)=﹣2,现对64进行如下操作:64[)=9[)="4"[)=3[[)=2,这样对64只需进行4次操作后变为2,类似地,只需进行4次操作后变为2的所有正整数中,最大的是.15.如图,中,,,、分别是、上两点,连接并延长,交的延长线于点,此时,,则的度数为______.16.计算:___.17.计算=_____.18.照相机的三脚架的设计依据是三角形具有_____.三、解答题(共66分)19.(10分)如图,已知△ABC中,AB=AC=12厘米,BC=9厘米,AD=BD=6厘米.(1)如果点P在线段BC上以3厘米秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,1秒钟时,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,点P运动到BC的中点时,如果△BPD≌△CPQ,此时点Q的运动速度为多少.(2)若点Q以(1)②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?20.(6分)在平面直角坐标系网格中,格点A的位置如图所示:(1)若点B坐标为(2,3),请你画出△AOB;(2)若△AOB与△A′O′B′关于y轴对称,请你画出△A′O′B';(3)请直接写出线段AB的长度.21.(6分)如图,在平面直角坐标系中,一次函数的图象与轴交于点,与轴交于点B,且与正比例函数的图象交点为.(1)求正比例函数与一次函数的关系式.(2)若点D在第二象限,是以AB为直角边的等腰直角三角形,请求出点D的坐标.(3)在轴上是否存在一点P使为等腰三角形,若存在,求出所有符合条件的点P的坐标.22.(8分)如图,在平面直角坐标中,直角梯形OABC的边OC、OA分别在x轴、y轴上,AB∥OC,∠AOC=90°,∠BCO=45°,BC=12,点C的坐标为(-18,0).(1)求点B的坐标;(2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE=4,∠OFE=45°,求直线DE的解析式;(3)求点D的坐标.23.(8分)如图,将一张长方形纸板按图中虚线裁剪成九块,其中有两块是边长都为m的大正方形,两块是边长都为n的小正方形,五块是长为m,宽为n的全等小长方形,且m>n.(以上长度单位:cm)(1)观察图形,可以发现代数式2m2+5mn+2n2可以因式分解为________;(2)若每块小长方形的面积为10cm2,四个正方形的面积和为58cm2,试求图中所有裁剪线(虚线部分)长之和.24.(8分)(1)计算:(2)若,求的值.25.(10分)已知:如图,中,∠ABC=45°,于D,BE平分∠ABC,且于E,与CD相交于点F,H是BC边的中点,连结DH与BE相交于点G(1)求证:BF=AC;(2)判断CE与BF的数量关系,并说明理由26.(10分)如图,已如是等边三角形,于点,于点,,求证:(1)≌;(2)是的垂直平分线.
参考答案一、选择题(每小题3分,共30分)1、D【分析】根据题意得出大正方形边长为(a+b),面积为(a+b)2,中间小正方形的边长为(a-b),面积为(a-b)2,然后根据图形得出不同的等式,对各选项进行验证即可.【题目详解】图②中的大正方形边长为(a+b),面积为(a+b)2,中间小正方形的边长为(a-b),面积为(a-b)2,由题意可知,大正方形的面积=四个小长方形的面积+小正方形的面积,即=(a+b)2=4ab+(a-b)2,故A项正确;∵a=3b,∴小正方形的面积可表示为4b2,即四个小长方形的面积+小正方形的面积=大正方形的面积,可表示为4b2+4ab=(a+b)2,故B项正确;大正方形的面积可表示为16b2,即大正方形的面积-四个小长方形的面积=小正方形的面积,可表示为(a-b)2=16b2-4ab,故C项正确;只有D选项无法验证,故选:D.【题目点拨】本题考查了等式的性质及应用,正方形的性质及应用,根据图形得出代数式是解题关键.2、B【解题分析】试题解析:由勾股定理得:∴数轴上点A所表示的数是故选B.3、A【分析】根据实数的性质即可依次判断.【题目详解】A.,正确;B.,故错误;C.,故错误;D.,故错误,故选A.【题目点拨】此题主要考查实数的化简,解题的关键是熟知实数的性质.4、B【分析】先找出被开方数的规律,然后再求得的位置即可.【题目详解】解:这组数据可表示为:;;…∵19×2=38,∴为第4行,第4个数字.故选:B.【题目点拨】此题考查的是数字的变化规律,找出其中的规律是解题的关键.5、A【分析】根据平行线的性质可得∠CBD的度数,根据角平分线的性质可得∠CBA的度数,根据等腰三角形的性质可得∠C的度数,根据三角形内角和定理可得∠BAC的度数.【题目详解】解:∵AE∥BD,∴∠CBD=∠E=35°,∵BD平分∠ABC,∴∠CBA=70°,∵AB=AC,∴∠C=∠CBA=70°,∴∠BAC=180°﹣70°×2=40°.故选A.【题目点拨】本题考查了平行线的性质,角平分线的性质,等腰三角形的性质和三角形内角和定理.关键是得到∠C=∠CBA=70°.6、C【分析】根据三角形中线的定义可知.【题目详解】因为,所以一定是的中线.【题目点拨】本题考查三角形的中线,掌握三角形中线的定义是解题的关键.7、B【分析】根据无理数的定义进行判断即可.【题目详解】根据无理数的定义:无理数是无限不循环小数,不能表示为两个整数的比.由此可得,中,是无理数故答案为:B.【题目点拨】本题主要考查了无理数的基本概念,掌握无理数的性质以及判断方法是解题的关键.8、A【解题分析】分式即形式,且分母中要有字母,且分母不能为0.【题目详解】本题中只有第五个式子为分式,所以答案选择A项.【题目点拨】本题考查了分式的概念,熟悉理解定义是解决本题的关键.9、D【分析】根据一次函数的性质判断即可.【题目详解】由图象可得:A、y随x的增大而增大;B、k>0,b>0;C、当x<0时,y>0或y<0;D、方程kx+b=2的解是x=﹣1,故选:D.【题目点拨】考查了一次函数与一元一次方程的关系,一次函数图象与系数的关系,正确的识别图象是解题的关键.10、B【解题分析】由零指数幂的定义可知=1.【题目详解】由零指数幂的定义可知=1,故选B.【题目点拨】此题主要考察零指数幂.二、填空题(每小题3分,共24分)11、(7,4)Bn(2n-1,2n-1)【题目详解】解:已知B1的坐标为(1,1),点B2的坐标为(3,2),可得正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,所以A1的坐标是(0,1),A2的坐标是(1,2),用待定系数法求得直线A1A2解析式为y=x+1.已知点B1的坐标为(1,1),点B2的坐标为(3,2),可得点B3的坐标为(7,4),所以Bn的横坐标是:2n-1,纵坐标是:2n-1.即可得Bn的坐标是(2n-1,2n-1).故答案为:(7,4);Bn(2n-1,2n-1)【题目点拨】本题主要考查了一次函数图象上点的坐标性质和坐标的变化规律,正确得到点的坐标的规律是解题的关键.12、1【分析】分腰长为4或腰长为8两种情况,根据等腰三角形的性质求出周长即可得答案.【题目详解】当腰长是4cm时,三角形的三边是4、4、8,∵4+4=8,∴不满足三角形的三边关系,当腰长是8cm时,三角形的三边是8、8、4,∴三角形的周长是8+8+4=1.故答案为:1【题目点拨】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,进行分类讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.13、3【分析】根据完全平方公式,将m2+2mn+n2改写成,然后把已知条件代入即可【题目详解】∵m+n=3,∴m2+2mn+n2-6=(m+n)2-6=9-6=3,故答案为:3.14、3【解题分析】试题分析:将1代入操作程序,只需要3次后变为2,设这个最大正整数为m,则,从而求得这个最大的数.【解答】解:1[)=8[)=3[)=2,设这个最大正整数为m,则m[)=1,∴<1.∴m<2.∴m的最大正整数值为3.考点:估算无理数的大小15、145°【分析】根据三角形外角性质求出,,代入求出即可.【题目详解】解:,,,,,故答案为:.【题目点拨】本题考查了三角形的外角性质,能熟记三角形外角性质的内容是解此题的关键,注意:三角形的一个外角等于和它不相邻的两个内角的和.16、-6【分析】利用零指数幂、负整数指数幂以及乘方的意义计算即可得到结果.【题目详解】故答案是:【题目点拨】本题综合考查了乘方的意义、零指数幂以及负整数指数幂.在计算过程中每一部分都是易错点,需认真计算.17、10【分析】根据零指数幂的意义以及负整数幂的意义即可求出答案.【题目详解】解:原式=9+1=10,故答案为:10【题目点拨】本题考查的知识点是零指数幂以及负整指数幂,掌握零指数幂的意义以及负整数幂的意义是解此题的关键.18、稳定性.【分析】根据三角形具有稳定性解答.【题目详解】解:照相机的三脚架的设计依据是三角形具有三角形的稳定性,故答案为:稳定性.【题目点拨】本题主要考查三角形的稳定性,掌握三角形稳定性的应用是解题的关键.三、解答题(共66分)19、(1)①全等,理由见解析;②4cm/s.(2)经过了24秒,点P与点Q第一次在BC边上相遇.【分析】(1)①先求得BP=CQ=3,PC=BD=6,然后根据等边对等角求得∠B=∠C,最后根据SAS即可证明;②因为VP≠VQ,所以BP≠CQ,又∠B=∠C,要使△BPD与△CQP全等,只能BP=CP=4.5,根据全等得出CQ=BD=6,然后根据运动速度求得运动时间,根据时间和CQ的长即可求得Q的运动速度;(2)因为VQ>VP,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,据此列出方程,解这个方程即可求得.【题目详解】(1)①1秒钟时,△BPD与△CQP是否全等;理由如下:∵t=1秒,∴BP=CQ=3(cm)∵AB=12cm,D为AB中点,∴BD=6cm,又∵PC=BC−BP=9−3=6(cm),∴PC=BD∵AB=AC,∴∠B=∠C,在△BPD与△CQP中,,∴△BPD≌△CQP(SAS),②∵VP≠VQ,∴BP≠CQ,又∵∠B=∠C,要使△BPD≌△CPQ,只能BP=CP=4.5,∵△BPD≌△CPQ,∴CQ=BD=6.∴点P的运动时间t==1.5(秒),此时VQ==4(cm/s).(2)因为VQ>VP,只能是点Q追上点P,即点Q比点P多走AB+AC的路程,设经过x秒后P与Q第一次相遇,依题意得:4x=3x+2×12,解得:x=24(秒)此时P运动了24×3=72(cm)又∵△ABC的周长为33cm,72=33×2+6,∴点P、Q在BC边上相遇,即经过了24秒,点P与点Q第一次在BC边上相遇.点睛:本题考查了三角形全等的判定和性质、等腰三角形的性质以及属性结合思想的运用,解题的根据是熟练掌握三角形的全都能的判定和性质.20、(1)见解析;(2)见解析;(3)AB=.【分析】(1)根据点A、O、B的坐标,顺次连接即可得△AOB;(2)根据关于y轴对称的点的坐标特征可得出A′、B′、O′的坐标,顺次连接A′、O′、B′即可得△A′O′B';(3)利用勾股定理求出AB的长即可.【题目详解】(1)如图所示,△AOB即为所求;(2)∵△AOB与△A′O′B′关于y轴对称,∴A′(-3,2),B′(-2,3),O′(0,0),如图所示,△A′O′B'即为所求;(3)AB==.【题目点拨】本题考查了作图-轴对称变换,熟练掌握关于y轴对称的点的坐标特征是解题关键.21、(1),;(2)点D的坐标为或;(3)或或或.【分析】(1)根据待定系数法即可解决;(2)分两种情形讨论,添加辅助线构造全等三角形即可求出点D坐标;(3)分OP=OC、CP=CO、PC=PO三种情形即可得出结论.【题目详解】解:(1)正比例函数的图象经过点,,,正比例函数解析式为,一次函数的图象经过,,,,一次函数为.(2)①当时,如图1,作轴垂足为M,,,,在与中:,,,,.②当时,作轴垂足为N,同理得,,,,D点坐标为或.(3)设点,,,,,当时,,,或,当时,,或(舍),,当时,,,,即:或或或.【题目点拨】此题是一次函数综合题,主要考查待定系数法求一次函数、全等三角形的判定和性质、勾股定理等知识,学会分类讨论的数学思想是正确解题的关键.22、(1)(-6,12);(2)y=-x+4;(3)D(-4,8)【分析】(1)过B作BG⊥x轴,交x轴于点G,由题意得到三角形BCG为等腰直角三角形,根据BC的长求出CG与BG的长,根据OC-CG求出OG的长,确定出B坐标即可;(2)由题意得到三角形EOF为等腰直角三角形,确定出E与F的坐标,设直线DE解析式为y=kx+b,把E与F代入求出k与b的值,确定出直线DE解析式;(3)设直线OB解析式为y=mx,把B坐标代入求出m的值,确定出OB解析式,与直线DE解析式联立求出D坐标即可.【题目详解】解:(1)过B作BG⊥x轴,交x轴于点G,在Rt△BCG中,∠BCO=45°,BC=12,∴BG=CG=12,∵C(﹣18,0),即OC=18,∴OG=OC-CG=18-12=6,则B=(﹣6,12);(2)∵∠EOF=90°,∠OFE=45°,∴△OEF为等腰直角三角形,∴OE=OF=4,即E(0,4),F(4,0),设直线DE解析式为y=kx+b,把E与F坐标代入得:,解得:k=﹣1,b=4,∴直线DE解析式为y=﹣x+4;(3)设直线OB解析式为y=mx,把B(-6,12)代入得:m=﹣2,∴直线OB解析式为y=﹣2x,联立得:,解得:,则D(﹣4,8).【题目点拨】此题属于一次函数综合题,涉及的知识有:坐标与图形性质,待定系数法求一次函数解析式,以及等腰直角三角形的判定与性质,熟练掌握待定系数法是解本题的关键.23、(1)(m+2n)(2m+n)(2)42cm【解题分析】(1)根据图象由长方形面积公式将代数式2m2+5mn+2n2因式分解即可;(2)求出m+n的值,然后根据图象由正方形的性质和长方形的性质即可得出结论;【题目详解】(1)2m2+5mn+2n2可以因式分解为(m+2n)(2m+n);故答案为(m+2n)(2m+n);(2)依题意得:2m2+2n2=58,mn=10,∴m2+n2=1.∴(m+n)2=m2+n2+2mn=49,∴m+n=7,∴图中所有裁剪线(虚线部分)长度之和为6m+6n=6(m+n)=6×7=42cm.【题目点拨】本题主要考查了因式分解的应用、列代数式以及完全平方公式的应用,根据已知图形得出是解题的关键.24、(1)6;(2)x=1,y=1【分析】(1)先算括号,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度厨师餐饮行业厨艺大赛组织合同
- 2025年度股东协议补充协议:针对公司分立、合并后的股权处理
- 二零二五年度数字经济干股股份合作协议
- 第二单元第四节《视频声音显效果-插入音视频超链接》教学设计 2023-2024学年西交大版(2014)初中信息技术七年级下册
- 二零二五年度全球供应链风险管理合作协议
- 二零二五年度智能化停车服务车位租赁协议
- 2025年度时尚品牌店铺经营合伙协议书
- 2025年鹤壁职业技术学院单招职业倾向性测试题库汇编
- 《移动网络规划与优化》课件 项目三 移动网络规划 任务1 了解无线网络规划
- 第三单元 第四课 草原人家(第2课时 现代化牧场)教学设计-人教版历史与社会七年级上册
- 无痛病房管理课件
- 让孩子变成学习的天使——由《第56号教室的奇迹》读书分享
- 球泡检验标准
- 公安笔录模板之询问嫌疑人(书面传唤治安案件)
- 振动分析基础讲义1
- 记账凭证汇总表excel模板
- 邓丽君经典歌曲30首简谱(共33页)
- 故障诊断技术的国内外发展现状(共3页)
- 园林绿化施工通用表格模板
- 初中《生物》(人教版)实验目录表
- 人民检察院信访案件终结办法
评论
0/150
提交评论