版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古财经大学本科年论文反常积分敛散性的鉴定办法作者陈志强学院统计与数学学院专业数学与应用数学年级级学号指导教师魏运导师职称专家最后成绩75分目录摘要………………..……。….……………..1核心词………………。.……。….…………。.1引言-—--—-———-———--——----—---————-------——-—--———-—-—-—--—---—--—-—-—-----————-—--————--—--—2一、预备知识…………..……。…。…………….21.无穷限反常积分…………。.…….…。…………….。22.瑕积分……。。…….…。…………33。反常积分的性质……。.…….…。…………3二、反常积分的收敛鉴别法……………….。…….….………41无穷积分的收敛鉴别……..…….….……………4(1)。定义鉴别法….。……。….……………。。……4(2)。比较鉴别法…。.…….….…………….。……4(3)。柯西鉴别法…。.…….….……………..……5(4)阿贝尔鉴别法。…..……。…。……………。6(5)。狄利克雷鉴别法…..……。….……………72瑕积分的收敛鉴别….。…….….…………….…。…8(1).定义鉴别法…。。……。….……………。.……8(2)。定理鉴别法……………。。…….…。……………..9(3).比较鉴别法…………………。.…….….…………9(4)。柯西鉴别法…………….。…….….……………9(5).阿贝尔鉴别法…………….。……。….……….10(6)。狄利克雷鉴别法……。。…….…。……………。10参考文献………………。。……。….………11摘要在诸多实际问题中,要突破积分区间的有穷性和被积函数的有界性,由此得到了定积分的两种形式的推广:无穷限反常积分和瑕积分。我们将这两种积分统称为反常积分。由于反常积分涉及到一种收敛问题,因此反常积分的敛散性鉴定就显得非常重要了。本文将对反常积分的敛散性鉴定进行归纳总结,并给出了有关定理的证明,举例阐明其应用,这样将有助于我们灵活的运用多个等价定理判断反常积分的敛散性。核心词:反常积分瑕积分极限敛散性引言近些年以来,某些数学工作者对反常积分敛散性的鉴别办法做了研究并获得了许多重要的进展.如华东师范大学数学系编,数学分析(上册),对反常积分积分的定义,性质的运用及讲义其鉴别收敛性的办法.华中科技大学出版的数学分析理论办法与技巧,也对反常积分敛散性鉴别做了具体的解说,还用图形的办法阐明其意义.引申出反常积分敛散性的等价定义,并通过例题阐明其应用.众多学者研究的内容全而广,实用性很高,特别是在研究敛散性的鉴别很明显,这对我现所研究的论文题目提供了大量的理论根据和参考文献,对我完毕本次论文有很大的协助,但绝大多数文献只是对其一种办法进行研究,而本文将对其进行归纳总结,举例阐明其应用。一、预备知识1.无穷限反常积分定义1。1设函数在[a,+∞)有定义,若在[a,A]上可积(A>a)且当A→+∞时,存在,称反常积分收敛,否则称反常积分与发散.对反常积分与注意:只有当和都收敛时,才认为是收敛的.2..瑕积分定义1:设f(x)在a的任何邻域内均无界,则称a为f(x)的一种瑕点定义2:设f(x)在内有定义,且b为唯一瑕点,若存在,称瑕积分收敛定义3:设C且为f(x)的一种瑕点,若和均收敛,则称瑕积分3。反常积分的性质(1)Cauchy收敛原理:收敛〉0,〉a,当>>时,有〈(2)线性性质:若与都收敛,则对任意常数,也收敛,且有=(3)积分区间可加性,若收敛,则b,=。(4)若收敛,则≤.反常积分的敛散性鉴别法1。无穷积分的敛散性鉴别(1)定义鉴别法设函数定义在无穷区间上,且在任何有限区间上可积.如果存在极限,则称收敛,否则发散,即对应定积分的极限存在广义积分收敛,定积分的极限不存在广义积分发散例1.1计算无穷积分(是常数,且)解:式中(2).比较鉴别法的普通形式:在有定义,且(a)〈<(b)=+=+例1。2讨论的收敛性解:由于,由于为收敛,因此根据比较鉴别法为绝对收敛。(3).比较鉴别法的极限形式:在有定义,且非负,且则:(a)当<〈(b)=(c)<<时,,含有相似点敛散性。证:(1)若,由极限的性质,存在常数A(A〉a)使得当时成立即于是由比较鉴别法,当收敛时也收敛(2)若,由极限的性质,存在常数A(A),使得当时成立其中0于是由比较鉴别法,当发散时也发散例1。3讨论的敛散性解:,而收敛,因此收敛总结:使用比较鉴别法,需要一种敛散性鉴别结论明确,同时又形成简朴的函数作为比较对象,在上面的例子中我们都是取为比较对象的,由于它们正好能满足这俩个条件(4)。柯西鉴别法:设在有定义,在任何有限区间上可积,且则有:当时,收敛当,时,发散(5)。阿贝尔鉴别法:满足:(a)单调有界(b)收敛则收敛证:由于存在M>0,使再由(2)可知,>0,,当时,有<又=(+)=2再次由柯西准则知Abel定理成立.例1.4证(0<)收敛运用阿贝尔鉴别法,由于收敛,又在上单调有界,故是收敛的(6).Dirichlet鉴别法:满足(1)f(x)单调且趋于0(x0)(2)有界(a>A)则收敛。证:由于存在M〉0,有界,因此有又由于f(x)0(x)故对〉0,,当时,有即,,因此同理有,故当时,有例1。5证积分收敛,但不绝对收敛证:,而单调且当时趋于0,故由Dirichlet鉴别法知收敛;但=而,单调趋于0,故收敛,而发散,故发散例1。6积分的敛散性当时是可积的;当时,它是不可积的,由于这时被积函数在上无界。但作为反常积分,当时收敛;当时发散;由于当时有而当时有例1。7积分作为反常积分,当时它收敛;当时它发散。这是由于当时有而当p=-1时有2.瑕积分的收敛鉴别(1)定义鉴别法设函数定义在无穷区间上,在点a的任一右邻域上无界,但在任何内闭区间有限区间上有界且可积.如果存在极限,则称反常积分收敛.,否则发散例2.1计算瑕积分的值解:被积函数在上持续,从而在任何上可积,为其瑕点.依定义求得(2)定理鉴别法(柯西收敛原理)瑕积分(瑕点为a)收敛的充要条件是:任给,存在,只要总有=0<(3)。比较法则设f(x)定义于,a为其瑕点,且在任何上可积,如果当时,收敛当,时,发散(4)。柯西鉴别法设x=a是f(x)的瑕点,如果那么绝对收敛;如果那么发散例2.2讨论的敛散性()解:x=0是其唯一奇点.当时,取,则,由柯西鉴别法知,收敛类似的,当时,取,则由柯西鉴别法知,发散当时,能够直接用Newton-leibniz公式得到因此,当时,反常积分收当敛;当时,反常积分发散(5)。阿贝尔鉴别法设f(x)在x=a有奇点,收敛,g(x)单调有界,那么积分收敛(6).狄利克雷鉴别法设f(x)在x=a有奇点,是的有界函数,g(x)单调且当xa时趋于零,那么积分例2。3讨论积分的收敛情形当时,,积分绝对收敛,又当即时,由狄利克雷鉴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2019粤教版 高中美术 选择性必修2 中国书画《第六单元 中国篆刻》大单元整体教学设计2020课标
- 茶叶 标签印刷合同
- 餐饮店卫生房屋租赁合同
- 博物馆托管运营合同
- 北京语言大学教师任职合同
- 保险合同工作程序案例
- 暑假食品安全家长会
- 消防安全教育主题班会
- 湖南省张家界市慈利县2024-2025学年七年级上学期期中考试生物学试题(含答案)
- 《巴拿马运河引航员平台》
- LED屏施工方案(技术方案)
- 统计学专业大学生职业生涯规划书
- 边坡防护作用与防护类型全解课件
- 项目收费站机电工程(三大系统)设备基本培训资料
- 非饱和土力学03-吸力与SWCC课件
- 难治性高血压-课件
- 混凝土搅拌站租赁合同范本(4篇)
- 成人无脉性心跳呼吸骤停抢救流程演示文稿
- 烟花爆竹经营单位主要负责人安全培训
- 《双摇跳》教学课件
- 可疑值的取舍-Q检验法
评论
0/150
提交评论