2022净零热储能长时储能加速能源系统脱碳英文版_第1页
2022净零热储能长时储能加速能源系统脱碳英文版_第2页
2022净零热储能长时储能加速能源系统脱碳英文版_第3页
2022净零热储能长时储能加速能源系统脱碳英文版_第4页
2022净零热储能长时储能加速能源系统脱碳英文版_第5页
已阅读5页,还剩64页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Net-zeroheat

LongDurationEnergyStorage

toaccelerateenergysystemdecarbonization

PublishedinNovember2022bytheLDESCouncil.Copiesofthisdocumentareavailableuponrequestorcanbedownloadedfromourwebsite:

.

ThisreportwasauthoredbytheLDESCouncilincollaborationwithMcKinsey&Companyasknowledgepartner.Thisworkisindependent,reflectstheviewsoftheauthors,andhasnotbeencommissionedbyanybusiness,government,orotherinstitution.Theauthorsofthereportconfirmthat:

Therearenorecommendationsand/oranymeasuresand/ortrajectorieswithinthereportthatcouldbeinterpretedasstandardsorasanyotherformof(suggested)coordinationbetweentheparticipantsofthestudyreferredtowithinthereportthatwouldinfringe

EUcompetitionlaw;and

Itisnottheirintentionthatanysuchformofcoordinationwillbeadopted.

Whilethecontentsofthereportanditsabstractimplicationsfortheindustrygenerallycan

bediscussedoncetheyhavebeenprepared,individualstrategiesremainproprietary,confidential,andtheresponsibilityofeachparticipant.Participantsareremindedthat,aspartoftheinvariablepracticeoftheLDESCouncilandtheEUcompetitionlawobligationstowhichmembershipactivitiesaresubject,suchstrategicandconfidentialinformationmustnotbesharedorcoordinated—includingaspartofthisreport.

PAGE

43

PAGE

10

Contents

Preface 4

Executivesummary 8

Acronyms 13

TheroleofLDESinnet-zeroenergy 14

TESasanenablertodecarbonizingheat 18

LDEStechnologies—costandcompetitiveness 24

TESbusinesscases 34

Anintegratedenergysystemperspective 48

UnlockingtheTESopportunity 54

Conclusion 57

AppendixA:Methodologyandassumptions 58

AppendixB:StateoftheTESindustry 67

Acknowledgements 69

Preface

Wemustcapturethenarrowwindowofopportunitytoachieveanet-zeroenergysystem.Thedecarbonizationoftheenergysectorneedstoacceleratetobecomealignedwithanet-zeropathwaythatlimitsglobalwarmingtobelow1.5°C.However,achievingnet-zeroemissionsby2050requiresmassivedevelopmentofrenewables,newandreinforcedinfrastructure,andtheadoptionofnewcleantechnologies.Manychallengescompound

inthistransition,assupplychainsneedtobescaledup,end-useequipmentneedstobeadapted,andinfrastructureneedstobe

deployedandreinforced(forexample,transmis-sionanddistributionelectricitygridexpansionscantakeupto15yearstorealize).Immediateactionisrequiredtomeetemission-reductiontargets,limittheimpactofclimatechange,andmaximizetheopportunitiesahead.

Asoutlinedinthe2021LDESNet-zeropowerreport,1long-durationenergystorage(LDES)offersalow-costflexibilitysolutiontoenableenergysystemdecarbonization.LDES2canbedeployedtostoreenergyforprolongedperiodsandcanbescaledupeconomicallytosustainenergyprovisionformultiplehours(tenormore),days(multidaystorage),months,andseasons.LDEScanstoreenergyinvariousforms,includingmechanical,thermal,electrochemical,orchemicalandcancontributesignificantlytothecost-efficientdecarbonizationoftheenergysystem.

Furthermore,ithelpsaddressmajorenergytransitionchallengessuchassolarandwindenergysupplyvariability,gridinfrastructurebottlenecks,oremissionsfromheatgeneration.

ThisreportpresentsthelatestviewontheroleofLDESinhelpingachieve

Net-zeropowerandheatby2050,3focusingonthepotentialroleofthermalenergystorage(TES)inrealizingnet-zeroheat.

ItbuildsonpriorLDESCouncilresearchandanalysisandpresentsupdatedcost

perspectivesbasedondatafromLDESCouncilmembers.Asafollow-uptopreviousLDESCouncilpublications,thisreportfocusesontheheatsector,apivotalcomponentinachievingglobaldecarbonizationandclimatetargets.

Accordingly,italsofocusesonaparticularsetofLDEStechnologies,TES,whichcanstoreheat,decarbonizeheatapplications,andintegraterenewablesinthissectorandthebroaderenergysystem.

Thisreportalsohighlightshowanintegratedsystemapproachisimperativetocost-efficientlydecarbonizingenergysystems.4Electricity,heat,andhydrogenarebecomingincreasinglyinterconnected,drivenbythegrowinguptakeofrenewableenergyandaccesstotechnologiesthatintegratethem,suchasheatpumpsandLDES(Exhibit1).

Thiscreatestheneedtolookattheintegratedecosystemratherthantheseparateenergysectorstojointlyinformcost-optimizedenergyinfrastructuredevelopments.Theanalysesinthisreporttakeinterdependenciesbetweenpower,heat,andhydrogenintoaccounttoassessthecost-optimizedmixofflexibilitysolutionsneededfortheheatandpowersectors.IthighlightstherelationshipbetweenpowerLDESandTEStoacceleratetheenergytransition,andtherolethatTEScanplayindecarbonizingheatapplications.

1https://

/insights/

2WheneverLDESismentionedasatechnologygroup,itisdefinedasatechnologystoringenergyfortenormorehours,asperARPA-E’sdefinition.WhenLDESismentionedinanalysisormodeling,theactualdurationlengthisalwaysspecified,inlinewithNREL’srecommendation.

3Itisassumedthatthepowersectorachievesnet-zeroemissionsby2040,andothersectorsby2050.

4Thedefinitionofenergysystemusedinthisreportincludesallcomponentsrelatedtotheproduction,conversion,anduseofelectricalenergy,heat,andhydrogen.TheelectrificationofthetransportsectorisincludedindirectlyinthefinalelectricitydemandscenariofromtheMcKinseyGlobalEnergyPerspective.

PAGE

5

PAGE

6

Exhibit1

Power,heat,andhydrogeninterconnections

Power

Hydrogencombinedheatandpower

Hydrogen

Heat

Power-to-hydrogenHydrogen-to-power

Power-to-heatHeat-to-power

Focusofthisreport

Hydrogen-to-heat

AbouttheLDESCouncil

TheLDESCouncilisaglobal,executive-ledorganizationthatstrivestoacceleratethedecarbonizationoftheenergysystematthelowestcosttosocietybydrivingtheinnovationanddeploymentofLDESanddecreasingemissions.TheLDES

CouncilwaslaunchedattheConferenceofParties(COP)26andcurrentlycomprises64companies.5Itprovidesfact-basedguidancetogovernmentsandindustry,drawingfromtheexperiencesofitsmembers,whichincludeleadingtechnologyproviders,industryandservicecustomers,capitalproviders,equipmentmanu-facturers,andlow-carbonenergysystemintegratorsanddevelopers.

Alltechnologyproviders,industryandservicescustomers,capitalproviders,equipmentmanufacturers,andlow-carbonenergysystemintegratorsanddevelopersaremembersoftheLDESCouncil.

Technologyproviders

5MembercountatthetimeofthereleaseofthisreportinNovember2022.

PAGE

7

PAGE

8

Industryandservicescustomers

Capitalproviders

Equipmentmanufacturers

Low-carbonenergysystemintegratorsanddevelopers

Executivesummary

Decarbonizingtheglobalenergysystemrequiresanintegratedapproachtoinformoptimalenergyinfrastructuredevelopmentsinatimelymanner.Italsorequiressystemicchangesaswemovetowardenergysystemspredominantlysuppliedbyvariablerenewableenergy.Torealizea1.5°Cscenarioby2050,projectionsestimateafivefoldincreaseintotalrenewablessupplyandatwofoldincrease

intotalelectricitydemandbythatyear.6Furthermore,thereareearlysignsthatpower,heat,andhydrogenarebecomingincreasinglyinterconnectedthroughsector-couplingtechnologieslikeheatpumps,electrolyzers,orhydrogenboilers.This,inadditiontothe

growingshareofrenewablesandelectrification,furtherincreasestheenergysystem’scom-plexity.Therefore,anintegratedapproachcouldhelpensureacost-optimizedandtimelyenergytransition.

LDESoffersacleanflexibilitysolutiontosecurepowerandheatreliability.LDESencompassesarangeoftechnologiesthatcanstoreelectricalenergyinvariousformsforprolongedperiodsatacompetitivecostandatscale.Thesetechnologiescanthendischargeelectricalenergywhenneeded—overhours,days,orseasons—inordertofulfilllong-durationsystemflexibilityneedstoshifttheincreasingvariable,renewableenergysupplytomatchdemand.Thisreportbuildsonthe2021LDESCouncilNet-zeropowerreport

byfocusingontheroleofLDESinrealizingnet-zeropowerandheatwhileexpandingontherolethermalenergystorage(TES)canplayindecarbonizingheatapplications.

TESprovidesanLDESsolutiontoelectri-fyingandfirmingheat.Decarbonizingtheheatsectoriscrucialforrealizinganet-zeroenergysystemby2050,giventhatitrepresentsroughly45percentofallenergy-relatedemissionstoday.7TEScandecarbonizeheatapplicationsbyelectrifyingandfirmingheatwithvariable

renewableenergysources.Inaddition,itcanoptimizeheatconsumptioninindustrial

processesandfacilitatethereuseofwasteheatortheintegrationofcleanheatsources(forexample,fromthermalsolar).

TEScanenablethecost-efficientelectri-ficationofmostheatapplications.TEScoversavarietyoftechnologiesthatcanaddressawiderangeofstoragedurations(fromintradaytoseasonal)andtemperatures(fromsubzeroto2,400°C).Accordingtothe2022LDESbenchmarkresults,TESenablescost-ef-ficientelectrificationanddecarbonizationofthemostwidelyusedheatapplications,namelysteamandhotair.Thebenchmarkresultsalsoindicatethatfirmingheatisverycost-efficientwhenthefinaldemandisheat.

SomeTEStechnologiesarealreadycommerciallyavailablewithvarious

easy-to-customizeuses.Todate,themostcommonlydeployedTEStechnologiesincludemedium-pressuresteam,withvariousappli-cations,includinginthechemicalsorfoodandbeverageindustries.Additionally,developingtechnologieswillexpandtheTESsolutionspacewithinnovativeconceptsandaddresstemperatureneedswellabove1,000°C.

TESbusinesscasesdemonstrateprofi-tabilityataninternalrateofreturn(IRR)of16to28percent,subjecttolocalmarketconditions.Theseincludeoptimalphysicalconfigurations(accesstocaptiverenewables,captiveheat,orgridelectricity)andmarketdesigns(includinglowgridfeesandtheremunerationofflexibility).ThebusinesscaseassessmentscoverawiderangeofrealisticTESusecases,namely:medium-pressuresteaminachemicalsplant(upto28percentIRR),districtheatingsuppliedbyapeakerplant(upto16percentIRR),high-pressuresteaminanaluminarefinery(upto16percentIRR),andco-generationinanoff-gridgreenhouse(upto22percentIRR).Allmarket-exposedbusiness

6“Netzeroby2050,aroadmapfortheglobalenergysector,”IEA,2021.

7Thebaselineincludesemissionsfromheating,industrialprocesses,transport,andotherenergysectoremissions.Itexcludespowergenerationemissions.

PAGE

9

PAGE

10

casesindicateasupportiveecosystemthatacknowledgesthevalueofflexibility,suchasancillaryservices,wouldlikelybecriticaltoensuringwidecommercialadoption.The

businesscasewithbehind-the-meterrenewablegenerationshowsthatTEScanalreadybecommerciallyfeasibleregardlessofexternalmarketconditions.

LDEStechnologiesareexpectedtobecomeincreasinglycost-competitiveasthemarketmatures.Theupdated2022powerLDES

costbenchmarksolidifiestheforecastthatLDEScostswilldeclineinthefollowingyears,suggestinga25to50percentoverallcapitalexpenditure(capex)reductionofpowerLDEStechnologiesby2040.Inaddition,the2022TEScostbenchmarkindicatesthatTEScapexisalsoexpectedtodeclineby2040,withanestimateddropofbetween5and30percentforpowercapexand15and70percentforenergystoragecapex.

AcasestudyontheportofRotterdamexemplifiestherelevanceofLDESfordecarbonizingenergyhubswhilecreatingsystemvalue.Thecasestudyrepresentsatypicalindustrialhubwithsignificantpowerandheatdemandon-site,whereacombination

ofTESandpowerLDEScanplayaroleindecarbonizingthesystem.InanindustriallocationliketheportofRotterdam,theneedforindustrialheatingcanfundamentallychangetheconfigurationforanet-zeroenergysystem.TEScanfirmthevariableoffshorewindsupplyinto

amorestablesupplyofcleanheatforindustrialheating,includinghigh-temperatureheating.

TEScoulddoubletheglobalLDEScapacitypotentialinacost-optimizednet-zeroenergypathwayinlinewitha1.5°Cscenario.Basedonintegratedsystemmodeling,TEScanexpandtheoverallinstalledcapacitypotentialofLDEStobetween2and8TWby2040(versus1to3TWwithoutTES),whichtranslatestoacumulativeinvestmentofUSD1.6trillionto

USD2.5trillion.TESenablesthisadditionalLDESopportunitybyprovidingacost-efficientalternativetodecarbonizingheatandhigh-tem-peratureheatingapplications.ThisisestimatedtoreducesystemcostsbyuptoUSD540billionperyearwhilecreatingbroadersystemvaluebyenablinganacceleratedrenewablesbuild-outandoptimizationofgridutilization.

CriticalsupportelementscouldhelpdrivemoreTESadoption.Asupportiveecosystemthatrewardsflexibilityandpromotesatech-nologicallylevelplayingfieldforflexibilitysolutionslikeLDESiscriticaltoacceleratingthescale-upofTES.Additionally,increasingawarenessandprovidingsupporttoderiskinitialinvestmentsispivotal.Businessleaders,policymakers,andinvestorshaveanimportantroletoplayinunlockingtheTESpotentialbyreducinglong-termuncertaintyandtherebyshapingthecost-optimizedpathwaytowardthenet-zeroenergysystemofthefuture.

Net-zeroheat

Power-to-heatHeat-to-power

LongDurationEnergyStoragetoaccelerateenergysystemdecarbonization

Thetransitiontonetzerorequiresanintegratedenergysystemperspective

LDES

Infra-

structure

Realizingacost-optimizedtransitiontonetzeroacrossallenergysectorsrequiressignificantdeploymentofrenewables,increasedinterconnectionsbetweenpower,heat,andhydrogen,andsupportinginfra-structure.Systemflexibilitywillbecriticaltosecuringenergysystemreliability

Power-to-hydrogenHydrogen-to-power

Power

Heatdecarbonizationiscriticalfornetzero,asitaccountsfor~45%ofenergy-relatedemissions

Hydrogen-to-heat

Hydro-gen

CHPwithhydrogenproductionanduse

Globalfinalenergyconsumptionbysector

Shareofglobalenergy-relatedCO2eemissions¹

Machinery,appliances,lighting

Transportation

Industry

Buildings:heating

DistrictheatingBuildings:cooking

Heatingandcooling

20%

fromindustrialheat

10%

frombuildingsheat

Heat

Longdurationenergystorageenablesacost-optimizedpathwaytowardnetzero

Acost-optimizednet-zeropathwaycouldby2040resultin...

2−8TW

deployedLDES

capacity

USD1.7−3.6tr

cumulativeLDEScapex

investments

upto

USD540bn

systemsavingsperyear

1.Baselineexcludeselectricityemissions.

PAGE

11

Electric Heat

boiler pump

withTES withTES

withLi-ionbattery

withLi-ionbattery

ElectricboilerHeatpump

Biomassboiler

Gasboiler HydrogenwithCCS² boiler

Gasboiler

15−25

25−35

Thermalenergystorage(TES)...

...comprisesawiderangeoftechnologies

2,400°C

<0°C

Storagetemperature

Months

Hours

Storagedurationusecase

SomeTEStechnologies

arealreadycommercially

available

R&D Pilots Commercially

available

Technicalmaturity

TESenableselectrificationofheatapplicationswithdifferenttemperatureanddurationneeds

...isacost-efficient24/7heatdecarbonizationsolution

Technologyequivalents

65−100 70−100

Levelizedcostofheat(steam)forselectedtechnologies¹USD/MWh

40−65

45−65

45−70

30−60

TESmakesstoringheatmorecost-efficientthanstoringpowerforheatapplications

…canpresentattractivebusinesscasessubjecttolocalconditions.IRRsforselectedusecases

UpsidecaseBasecase

28%

6%

Chemicalsplant

22%

Off-gridgreenhouse

16%

0%

Districtheatingpeakerplant

16%

Aluminarefinery

TESbehind-the-meterbusinesscasescanbepositiveastherearenogridconnectionfees

...requiresenablerstodrivebroadadoption

Rewardvalueofflexibility

Reducedgridfees

Ancillarymarkets

Createatechnolo-gicallylevelplayingfieldacrossflexibilitysolutionsthrough

Regulations

Standards

Increaseaware-nessofTEStechnologies

Pilots

Demonstration

Plants

Deriskinitialinvestments

Subsidies

Guarantees

Costrangesreflectfuelprices(gas,electricity,biomass).IncludesCO2emissioncostsofUSD100/t.

Carboncaptureandstorage.

PAGE

13

Acronyms

Capex Capitalexpenditure

CCS Carboncaptureandstorage

CO2 Carbondioxide

CO2e Carbondioxideequivalent

EJ Exajoules

GHG Greenhousegas

GtCO2eq GigatonsofcarbondioxideequivalentGW Gigawatt

GWh Gigawatt-hour

Hz Hertz

IRR Internalrateofreturn

kW Kilowatt

kWh Kilowatt-hour

LCOE Levelizedcostofelectricity

LCOH Levelizedcostofheat

Li-ion Lithium-ion

LDES LongdurationenergystorageMPM McKinseyPowerModel

MW Megawatt

MWh Megawatt-hour

MWhth Megawatt-hourthermalMWth Megawattthermal

NPV Netpresentvalue

PV Photovoltaic

PPA Powerpurchaseagreement

RTE Round-tripefficiency

R&D Researchanddevelopment

TTF Titletransferfacility

TW Terawatt

TWh Terawatt-hour

TES Thermalenergystorage

T&D TransmissionanddistributionWACC Weightedaveragecostofcapital

1

TheroleofLDESinnet-zeroenergy

Decarbonizingtheenergysystemrequiresanintegratedapproachtoinformoptimalenergyinfrastructuredevelopmentsinatimelymanner.Italsorequiressystemicchangesaswemovetowardenergysystemspredominantlysuppliedbyvariablerenewableenergy.

Torealizea1.5°Cscenarioby2050,projectionsestimateafivefoldincreaseintotalrenewablessupplyandatwofoldincreaseintotalelectricitydemand

bythatyear.Furthermore,thereareearlysignsthatpower,heat,andhydrogenarebecomingincreasinglyinterconnectedthroughsector-couplingtechnologieslikeheatpumps,electrolyzers,orhydrogenboilers.

This,inadditiontothegrowingshareofrenewablesandelectrification,furtherincreasestheenergysystem’scomplexity.Therefore,anintegratedapproachcouldhelpensureacost-optimizedandtimelyenergytransition.

PAGE

15

Anet-zeroenergysystemrequirescleanflexibilitysolutions

Achievingnet-zeroemissionsintheenergysectorby2050ispivotalforlimitingglobalwarmingto1.5ºC.Tokeepglobalwarmingbelow1.5ºCcomparedtopreindustriallevels,ascalledforintheParisAgreement,greenhousegas(GHG)emissionsneedtoreachnetzeroby2050.Theenergysectorcurrentlyaccountsforroughlythree-quartersofGHGemissionsandholdsthekeytomitigatingtheworsteffects

ofclimatechange.8Replacingpollutingfossilenergywithrenewableenergysourceslikewindorsolarandmeetingtheenergy-shiftingdemandwithLDESwillhelpsignificantlyreducecarbonemissionswhilecreatingareliableenergysystem.

Thegrowthofsolarandwindgenerationisincreasingthevariabilityoftheenergy

supplymixandtheneedforcleanflexibilitysolutionstosafeguardenergysystemreliability.Ascountriesdecarbonize,theglobalshareofrenewableenergysupplyisexpectedtogrowdramatically.Net-zerotransitionscenariosindicatearoughlythreefoldandfivefoldincreaseinrenewableenergysupply,withrenewablessupplyingupto

30and67percentofglobalenergyin2030and2050,respectively.Furthermore,electrificationisexpectedtoincrease,doublingtheelectricitydemandby2050.9Therefore,thereisagrowingneedforcleanflexibilitysolutionsthatbridgetherenewablessupply-and-demandgapwhilesecuringsystemreliability.EnsuringrenewableelectricitymatchesdemandwithLDEScanhelpprovidetheflexibility,securityofsupply,andresiliencyneededtomeetglobalnet-zerotargets.

Peak

solargeneration

Energyshifting

Industrialheatdemand

Definitionsofenergy

systemreliabilityandflexibility

Energysystemreliabilityistheabilityofenergysystemstodeliverenergyinthequantityandqualitydemandedbyconsumers.

Energysystemflexibilityistheabilityofenergysystemstorespondtosupply-and-demandvariationspromptlyandsupportsreliability.

LDESoffersacleanflexibilitysolutionthatcanacceleraterenewablesbuild-out

LDESprovidesenergysystemflexibility.LDESsolutionsenabletheshiftingofenergyfromtimesofhighsupplytotimesofhighdemand,therebyhelpingpreservesystembalanceandsecuringitsreliability.LDEScanbedeployedcompetitivelytostoreenergyforprolongedperiodsandsustainenergyprovisionformultiplehours,days,orweeks.Suchlong-durationflexibilityisexpectedtobecomeessentialtofirmsupplyastheshareofrenewableenergysupplyincreases.LDES

cancovervariousdurationsdrivenbytechnicalconsiderationsandeconomics.

LDEScanacceleratethebuild-outofrenewablesbyoptimizinginfrastructureutilization.Theenergy-shiftingcapabilityofLDEShasmultiplesystembenefits.First,itcouldreduceenergycurtailmentandrelatedopportunitycostsbyfacilitatingsupply-sideenergystorage.Forexample,theinitialmod-elingofanaluminarefineryusecaseindicatedthatLDEScouldreduceoverallgenerationcapacityneedsby15to30percent.Second,itcouldhelpimproveoverallgridutilizationthroughsupply-and-demand-sideenergy

storage,reducingstressonthegrid.Asaresult,LDEScanbedeployedacrosstheelectricitygrid(forexample,atcriticalcorridorsatcapac-ity)toacceleraterenewables’development.

Lastly,LDEScanprovideothersystembenefitslikestability,withsometechnologiesofferingserviceslikeinertiaprovisionorfrequencyregulation.

Noon Midnight

8UnitedNationsNetZeroCoalition.

9“Netzeroby2050,aroadmapfortheglobalenergysector,”IEA,2021.

LDEScansupportthesecurityofsupply

Theneedtoensureanaffordable,reliable,cleanenergysystemhasbeenheightenedbyrecentchallengesintheenergysector,whichhaveincreasedtheprominenceofenergysecurity

onglobalagendas.Europeisnowfacingelectricityandnaturalgaspricesthatareovertentimeshigherthanhistoricalaverages,drivenbymultiplefactorssuchasthewarinUkraineandtheriseinglobaldemandfollowingtheCOVID-19pandemic.10Globalgasmarketshavealsobeenaffected,causingUSelectricitypricestoincreasethreefoldbetween2020and2022.11

IncorporatingLDEScanhelpincreasethesecurityofsupplyandcreatenewusecasesforrenewableenergy.LDEScanalsounlocknewopportunitiesthatarenotthoroughlyaddressedbyshorter-durationstoragesolutions.Examplesinclude:helpingincreasetheshareofrenew-ablesintheenergymix,providingresiliencetounreliablegridsatlongdurations(likeatisolatedoroff-gridlocations),enablingcost-efficient24/7renewablepowerpurchaseagreements(PPAs),orprovidingstabilityservicestothegrid.Inaddition,TEScansupportnewheatingusecases,namelythewiderelectrificationofheat,reuseofwasteheat,demand-sidemanagement,andlowerrenewablescurtailment.

10DutchTTFGasFutures.

11U.S.EnergyInformationAdministration(EIA).

Therearedifferentoptionstoconsiderforenergysystemflexibility

Withintheelectricitysector,fiveflexibilityoptionscanhelpmatchsupplyanddemand:

Energystorage,includingLi-ionbatteriesanddeployableLDESsolutionssuchasclosedlooppumpedstorage

Dispatchablecapacitysuchashydropower

Renewableenergycurtailment

Transmissionanddistributiongridexpansions

Demand-sidemanagement

Furthermore,systemflexibilityisincreasinglyimportantinrespondingtomarketsupplyfluctuations.

Theheatsectorhasanalogouscleanflexi-bilitysolutionstotheelectricitysector,thoughwithclean-heat-specifictechnologies:

Thermalenergystorage

Dispatchablecapacitylikeclean-fuelboilers

Robustheatinginfrastructurelikedistrictheating

Integratingtheelectricityandheatsectorscanbecriticalinenablingcleanflexibility.Electricityandheatwerehistoricallyconnectedthroughheatenginesinconventionalgenerationplants.Goingforward,electricityandheatareexpectedtobecomemoreintegratedthroughhigheradoptionofpower-to-heattechnologies,suchasheatpumpsorelectricboilers,andrenewableheat-to-powertechnologies,likeconcentratedsolarpower.Theincreasedinterconnectednessofthesectorssupportstheirdecarbonizationandtheintegration

ofrenewables.Furthermore,solutionsthatenhancesectorintegration—likeTES—driveflexibilityby,forinstance,storingenergyattimesofoversupplyanddischargingheatattimesofundersupply.Giventhegrowinginterdepen-denciesofelectricityandheat,anintegratedperspectiveisbecomingrelevanttorealizinganet-zeroenergysystem.

16

PAGE

17

KEYTAKEAWAYS

•Astheshareofvariablerenewableenergygrowssteadily,thereisagreaterneedforcleanflexibilitysolutions,likeLDES,tosecuresystemreliability.

•LDESisessentialforkeepingglobalwarmingbelow1.5°Casitcanhelpacceleratethedevelopmentofrenewables.

•Theintegrationoftheenergysystemthroughsectorcouplingimprovesflexibility,securityofsupply,and,consequently,systemreliabilityandresiliency.

2

TESasanenablertodecarbonizingheat

Decarbonizingtheheatsectoriscrucialtorealizinganet-zeroenergysystemin2050,giventhat,excludingpower,itrepresentsabout45percent

ofallenergy-relatedemissionstoday.

TEScandecarbonizeheatapplicationsbyelectrifyingandfirmingheatwithvariablerenewablesources.

Inaddition,itcanoptimizeheatconsumptioninindustrialprocessesandfacilitatethereuseofwasteheatortheintegrationofcleanheatsources.

PAGE

19

PAGE

22

Mostheatapplicationscanbedecarbonizedthroughelectrifi-cation

Heataccountsforabout45percentofenergy-relatedemissions.Heatingandcoolingusecasesaccountformorethan50percentofglobalenergyconsumptionacrossallsectorsandabout45percentof

globalenergy-relatedCO2emissions,excludingpower(10Gtin2019).Industrialapplicationsaccountforthelargestshareofheatconsump-

tion,at40percentoftotalheatdemand,andcompriseusecasesvaryingfromlow-tohigh-gradeheatingabove1,500°C.Buildingheatingandcoolingisalsoasignificantcontributorataround30percentoftotalheatdemand,12thoughtypicallyatlowertempera-turesaroundorbelow100°C.Lastly,heatingisusedforcookingaswellasdistrictheating(Exhibit2).

H

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论