版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Net-zeroheat
LongDurationEnergyStorage
toaccelerateenergysystemdecarbonization
PublishedinNovember2022bytheLDESCouncil.Copiesofthisdocumentareavailableuponrequestorcanbedownloadedfromourwebsite:
.
ThisreportwasauthoredbytheLDESCouncilincollaborationwithMcKinsey&Companyasknowledgepartner.Thisworkisindependent,reflectstheviewsoftheauthors,andhasnotbeencommissionedbyanybusiness,government,orotherinstitution.Theauthorsofthereportconfirmthat:
Therearenorecommendationsand/oranymeasuresand/ortrajectorieswithinthereportthatcouldbeinterpretedasstandardsorasanyotherformof(suggested)coordinationbetweentheparticipantsofthestudyreferredtowithinthereportthatwouldinfringe
EUcompetitionlaw;and
Itisnottheirintentionthatanysuchformofcoordinationwillbeadopted.
Whilethecontentsofthereportanditsabstractimplicationsfortheindustrygenerallycan
bediscussedoncetheyhavebeenprepared,individualstrategiesremainproprietary,confidential,andtheresponsibilityofeachparticipant.Participantsareremindedthat,aspartoftheinvariablepracticeoftheLDESCouncilandtheEUcompetitionlawobligationstowhichmembershipactivitiesaresubject,suchstrategicandconfidentialinformationmustnotbesharedorcoordinated—includingaspartofthisreport.
PAGE
43
PAGE
10
Contents
Preface 4
Executivesummary 8
Acronyms 13
TheroleofLDESinnet-zeroenergy 14
TESasanenablertodecarbonizingheat 18
LDEStechnologies—costandcompetitiveness 24
TESbusinesscases 34
Anintegratedenergysystemperspective 48
UnlockingtheTESopportunity 54
Conclusion 57
AppendixA:Methodologyandassumptions 58
AppendixB:StateoftheTESindustry 67
Acknowledgements 69
Preface
Wemustcapturethenarrowwindowofopportunitytoachieveanet-zeroenergysystem.Thedecarbonizationoftheenergysectorneedstoacceleratetobecomealignedwithanet-zeropathwaythatlimitsglobalwarmingtobelow1.5°C.However,achievingnet-zeroemissionsby2050requiresmassivedevelopmentofrenewables,newandreinforcedinfrastructure,andtheadoptionofnewcleantechnologies.Manychallengescompound
inthistransition,assupplychainsneedtobescaledup,end-useequipmentneedstobeadapted,andinfrastructureneedstobe
deployedandreinforced(forexample,transmis-sionanddistributionelectricitygridexpansionscantakeupto15yearstorealize).Immediateactionisrequiredtomeetemission-reductiontargets,limittheimpactofclimatechange,andmaximizetheopportunitiesahead.
Asoutlinedinthe2021LDESNet-zeropowerreport,1long-durationenergystorage(LDES)offersalow-costflexibilitysolutiontoenableenergysystemdecarbonization.LDES2canbedeployedtostoreenergyforprolongedperiodsandcanbescaledupeconomicallytosustainenergyprovisionformultiplehours(tenormore),days(multidaystorage),months,andseasons.LDEScanstoreenergyinvariousforms,includingmechanical,thermal,electrochemical,orchemicalandcancontributesignificantlytothecost-efficientdecarbonizationoftheenergysystem.
Furthermore,ithelpsaddressmajorenergytransitionchallengessuchassolarandwindenergysupplyvariability,gridinfrastructurebottlenecks,oremissionsfromheatgeneration.
ThisreportpresentsthelatestviewontheroleofLDESinhelpingachieve
Net-zeropowerandheatby2050,3focusingonthepotentialroleofthermalenergystorage(TES)inrealizingnet-zeroheat.
ItbuildsonpriorLDESCouncilresearchandanalysisandpresentsupdatedcost
perspectivesbasedondatafromLDESCouncilmembers.Asafollow-uptopreviousLDESCouncilpublications,thisreportfocusesontheheatsector,apivotalcomponentinachievingglobaldecarbonizationandclimatetargets.
Accordingly,italsofocusesonaparticularsetofLDEStechnologies,TES,whichcanstoreheat,decarbonizeheatapplications,andintegraterenewablesinthissectorandthebroaderenergysystem.
Thisreportalsohighlightshowanintegratedsystemapproachisimperativetocost-efficientlydecarbonizingenergysystems.4Electricity,heat,andhydrogenarebecomingincreasinglyinterconnected,drivenbythegrowinguptakeofrenewableenergyandaccesstotechnologiesthatintegratethem,suchasheatpumpsandLDES(Exhibit1).
Thiscreatestheneedtolookattheintegratedecosystemratherthantheseparateenergysectorstojointlyinformcost-optimizedenergyinfrastructuredevelopments.Theanalysesinthisreporttakeinterdependenciesbetweenpower,heat,andhydrogenintoaccounttoassessthecost-optimizedmixofflexibilitysolutionsneededfortheheatandpowersectors.IthighlightstherelationshipbetweenpowerLDESandTEStoacceleratetheenergytransition,andtherolethatTEScanplayindecarbonizingheatapplications.
1https://
/insights/
2WheneverLDESismentionedasatechnologygroup,itisdefinedasatechnologystoringenergyfortenormorehours,asperARPA-E’sdefinition.WhenLDESismentionedinanalysisormodeling,theactualdurationlengthisalwaysspecified,inlinewithNREL’srecommendation.
3Itisassumedthatthepowersectorachievesnet-zeroemissionsby2040,andothersectorsby2050.
4Thedefinitionofenergysystemusedinthisreportincludesallcomponentsrelatedtotheproduction,conversion,anduseofelectricalenergy,heat,andhydrogen.TheelectrificationofthetransportsectorisincludedindirectlyinthefinalelectricitydemandscenariofromtheMcKinseyGlobalEnergyPerspective.
PAGE
5
PAGE
6
Exhibit1
Power,heat,andhydrogeninterconnections
Power
Hydrogencombinedheatandpower
Hydrogen
Heat
Power-to-hydrogenHydrogen-to-power
Power-to-heatHeat-to-power
Focusofthisreport
Hydrogen-to-heat
AbouttheLDESCouncil
TheLDESCouncilisaglobal,executive-ledorganizationthatstrivestoacceleratethedecarbonizationoftheenergysystematthelowestcosttosocietybydrivingtheinnovationanddeploymentofLDESanddecreasingemissions.TheLDES
CouncilwaslaunchedattheConferenceofParties(COP)26andcurrentlycomprises64companies.5Itprovidesfact-basedguidancetogovernmentsandindustry,drawingfromtheexperiencesofitsmembers,whichincludeleadingtechnologyproviders,industryandservicecustomers,capitalproviders,equipmentmanu-facturers,andlow-carbonenergysystemintegratorsanddevelopers.
Alltechnologyproviders,industryandservicescustomers,capitalproviders,equipmentmanufacturers,andlow-carbonenergysystemintegratorsanddevelopersaremembersoftheLDESCouncil.
Technologyproviders
5MembercountatthetimeofthereleaseofthisreportinNovember2022.
PAGE
7
PAGE
8
Industryandservicescustomers
Capitalproviders
Equipmentmanufacturers
Low-carbonenergysystemintegratorsanddevelopers
Executivesummary
Decarbonizingtheglobalenergysystemrequiresanintegratedapproachtoinformoptimalenergyinfrastructuredevelopmentsinatimelymanner.Italsorequiressystemicchangesaswemovetowardenergysystemspredominantlysuppliedbyvariablerenewableenergy.Torealizea1.5°Cscenarioby2050,projectionsestimateafivefoldincreaseintotalrenewablessupplyandatwofoldincrease
intotalelectricitydemandbythatyear.6Furthermore,thereareearlysignsthatpower,heat,andhydrogenarebecomingincreasinglyinterconnectedthroughsector-couplingtechnologieslikeheatpumps,electrolyzers,orhydrogenboilers.This,inadditiontothe
growingshareofrenewablesandelectrification,furtherincreasestheenergysystem’scom-plexity.Therefore,anintegratedapproachcouldhelpensureacost-optimizedandtimelyenergytransition.
LDESoffersacleanflexibilitysolutiontosecurepowerandheatreliability.LDESencompassesarangeoftechnologiesthatcanstoreelectricalenergyinvariousformsforprolongedperiodsatacompetitivecostandatscale.Thesetechnologiescanthendischargeelectricalenergywhenneeded—overhours,days,orseasons—inordertofulfilllong-durationsystemflexibilityneedstoshifttheincreasingvariable,renewableenergysupplytomatchdemand.Thisreportbuildsonthe2021LDESCouncilNet-zeropowerreport
byfocusingontheroleofLDESinrealizingnet-zeropowerandheatwhileexpandingontherolethermalenergystorage(TES)canplayindecarbonizingheatapplications.
TESprovidesanLDESsolutiontoelectri-fyingandfirmingheat.Decarbonizingtheheatsectoriscrucialforrealizinganet-zeroenergysystemby2050,giventhatitrepresentsroughly45percentofallenergy-relatedemissionstoday.7TEScandecarbonizeheatapplicationsbyelectrifyingandfirmingheatwithvariable
renewableenergysources.Inaddition,itcanoptimizeheatconsumptioninindustrial
processesandfacilitatethereuseofwasteheatortheintegrationofcleanheatsources(forexample,fromthermalsolar).
TEScanenablethecost-efficientelectri-ficationofmostheatapplications.TEScoversavarietyoftechnologiesthatcanaddressawiderangeofstoragedurations(fromintradaytoseasonal)andtemperatures(fromsubzeroto2,400°C).Accordingtothe2022LDESbenchmarkresults,TESenablescost-ef-ficientelectrificationanddecarbonizationofthemostwidelyusedheatapplications,namelysteamandhotair.Thebenchmarkresultsalsoindicatethatfirmingheatisverycost-efficientwhenthefinaldemandisheat.
SomeTEStechnologiesarealreadycommerciallyavailablewithvarious
easy-to-customizeuses.Todate,themostcommonlydeployedTEStechnologiesincludemedium-pressuresteam,withvariousappli-cations,includinginthechemicalsorfoodandbeverageindustries.Additionally,developingtechnologieswillexpandtheTESsolutionspacewithinnovativeconceptsandaddresstemperatureneedswellabove1,000°C.
TESbusinesscasesdemonstrateprofi-tabilityataninternalrateofreturn(IRR)of16to28percent,subjecttolocalmarketconditions.Theseincludeoptimalphysicalconfigurations(accesstocaptiverenewables,captiveheat,orgridelectricity)andmarketdesigns(includinglowgridfeesandtheremunerationofflexibility).ThebusinesscaseassessmentscoverawiderangeofrealisticTESusecases,namely:medium-pressuresteaminachemicalsplant(upto28percentIRR),districtheatingsuppliedbyapeakerplant(upto16percentIRR),high-pressuresteaminanaluminarefinery(upto16percentIRR),andco-generationinanoff-gridgreenhouse(upto22percentIRR).Allmarket-exposedbusiness
6“Netzeroby2050,aroadmapfortheglobalenergysector,”IEA,2021.
7Thebaselineincludesemissionsfromheating,industrialprocesses,transport,andotherenergysectoremissions.Itexcludespowergenerationemissions.
PAGE
9
PAGE
10
casesindicateasupportiveecosystemthatacknowledgesthevalueofflexibility,suchasancillaryservices,wouldlikelybecriticaltoensuringwidecommercialadoption.The
businesscasewithbehind-the-meterrenewablegenerationshowsthatTEScanalreadybecommerciallyfeasibleregardlessofexternalmarketconditions.
LDEStechnologiesareexpectedtobecomeincreasinglycost-competitiveasthemarketmatures.Theupdated2022powerLDES
costbenchmarksolidifiestheforecastthatLDEScostswilldeclineinthefollowingyears,suggestinga25to50percentoverallcapitalexpenditure(capex)reductionofpowerLDEStechnologiesby2040.Inaddition,the2022TEScostbenchmarkindicatesthatTEScapexisalsoexpectedtodeclineby2040,withanestimateddropofbetween5and30percentforpowercapexand15and70percentforenergystoragecapex.
AcasestudyontheportofRotterdamexemplifiestherelevanceofLDESfordecarbonizingenergyhubswhilecreatingsystemvalue.Thecasestudyrepresentsatypicalindustrialhubwithsignificantpowerandheatdemandon-site,whereacombination
ofTESandpowerLDEScanplayaroleindecarbonizingthesystem.InanindustriallocationliketheportofRotterdam,theneedforindustrialheatingcanfundamentallychangetheconfigurationforanet-zeroenergysystem.TEScanfirmthevariableoffshorewindsupplyinto
amorestablesupplyofcleanheatforindustrialheating,includinghigh-temperatureheating.
TEScoulddoubletheglobalLDEScapacitypotentialinacost-optimizednet-zeroenergypathwayinlinewitha1.5°Cscenario.Basedonintegratedsystemmodeling,TEScanexpandtheoverallinstalledcapacitypotentialofLDEStobetween2and8TWby2040(versus1to3TWwithoutTES),whichtranslatestoacumulativeinvestmentofUSD1.6trillionto
USD2.5trillion.TESenablesthisadditionalLDESopportunitybyprovidingacost-efficientalternativetodecarbonizingheatandhigh-tem-peratureheatingapplications.ThisisestimatedtoreducesystemcostsbyuptoUSD540billionperyearwhilecreatingbroadersystemvaluebyenablinganacceleratedrenewablesbuild-outandoptimizationofgridutilization.
CriticalsupportelementscouldhelpdrivemoreTESadoption.Asupportiveecosystemthatrewardsflexibilityandpromotesatech-nologicallylevelplayingfieldforflexibilitysolutionslikeLDESiscriticaltoacceleratingthescale-upofTES.Additionally,increasingawarenessandprovidingsupporttoderiskinitialinvestmentsispivotal.Businessleaders,policymakers,andinvestorshaveanimportantroletoplayinunlockingtheTESpotentialbyreducinglong-termuncertaintyandtherebyshapingthecost-optimizedpathwaytowardthenet-zeroenergysystemofthefuture.
Net-zeroheat
Power-to-heatHeat-to-power
LongDurationEnergyStoragetoaccelerateenergysystemdecarbonization
Thetransitiontonetzerorequiresanintegratedenergysystemperspective
LDES
Infra-
structure
Realizingacost-optimizedtransitiontonetzeroacrossallenergysectorsrequiressignificantdeploymentofrenewables,increasedinterconnectionsbetweenpower,heat,andhydrogen,andsupportinginfra-structure.Systemflexibilitywillbecriticaltosecuringenergysystemreliability
Power-to-hydrogenHydrogen-to-power
Power
Heatdecarbonizationiscriticalfornetzero,asitaccountsfor~45%ofenergy-relatedemissions
Hydrogen-to-heat
Hydro-gen
CHPwithhydrogenproductionanduse
Globalfinalenergyconsumptionbysector
Shareofglobalenergy-relatedCO2eemissions¹
Machinery,appliances,lighting
Transportation
Industry
Buildings:heating
DistrictheatingBuildings:cooking
Heatingandcooling
20%
fromindustrialheat
10%
frombuildingsheat
Heat
Longdurationenergystorageenablesacost-optimizedpathwaytowardnetzero
Acost-optimizednet-zeropathwaycouldby2040resultin...
2−8TW
deployedLDES
capacity
USD1.7−3.6tr
cumulativeLDEScapex
investments
upto
USD540bn
systemsavingsperyear
1.Baselineexcludeselectricityemissions.
PAGE
11
Electric Heat
boiler pump
withTES withTES
withLi-ionbattery
withLi-ionbattery
ElectricboilerHeatpump
Biomassboiler
Gasboiler HydrogenwithCCS² boiler
Gasboiler
15−25
25−35
Thermalenergystorage(TES)...
...comprisesawiderangeoftechnologies
2,400°C
<0°C
Storagetemperature
Months
Hours
Storagedurationusecase
SomeTEStechnologies
arealreadycommercially
available
R&D Pilots Commercially
available
Technicalmaturity
TESenableselectrificationofheatapplicationswithdifferenttemperatureanddurationneeds
...isacost-efficient24/7heatdecarbonizationsolution
Technologyequivalents
65−100 70−100
Levelizedcostofheat(steam)forselectedtechnologies¹USD/MWh
40−65
45−65
45−70
30−60
TESmakesstoringheatmorecost-efficientthanstoringpowerforheatapplications
…canpresentattractivebusinesscasessubjecttolocalconditions.IRRsforselectedusecases
UpsidecaseBasecase
28%
6%
Chemicalsplant
22%
Off-gridgreenhouse
16%
0%
Districtheatingpeakerplant
16%
Aluminarefinery
TESbehind-the-meterbusinesscasescanbepositiveastherearenogridconnectionfees
...requiresenablerstodrivebroadadoption
Rewardvalueofflexibility
Reducedgridfees
Ancillarymarkets
Createatechnolo-gicallylevelplayingfieldacrossflexibilitysolutionsthrough
Regulations
Standards
Increaseaware-nessofTEStechnologies
Pilots
Demonstration
Plants
Deriskinitialinvestments
Subsidies
Guarantees
Costrangesreflectfuelprices(gas,electricity,biomass).IncludesCO2emissioncostsofUSD100/t.
Carboncaptureandstorage.
PAGE
13
Acronyms
Capex Capitalexpenditure
CCS Carboncaptureandstorage
CO2 Carbondioxide
CO2e Carbondioxideequivalent
EJ Exajoules
GHG Greenhousegas
GtCO2eq GigatonsofcarbondioxideequivalentGW Gigawatt
GWh Gigawatt-hour
Hz Hertz
IRR Internalrateofreturn
kW Kilowatt
kWh Kilowatt-hour
LCOE Levelizedcostofelectricity
LCOH Levelizedcostofheat
Li-ion Lithium-ion
LDES LongdurationenergystorageMPM McKinseyPowerModel
MW Megawatt
MWh Megawatt-hour
MWhth Megawatt-hourthermalMWth Megawattthermal
NPV Netpresentvalue
PV Photovoltaic
PPA Powerpurchaseagreement
RTE Round-tripefficiency
R&D Researchanddevelopment
TTF Titletransferfacility
TW Terawatt
TWh Terawatt-hour
TES Thermalenergystorage
T&D TransmissionanddistributionWACC Weightedaveragecostofcapital
1
TheroleofLDESinnet-zeroenergy
Decarbonizingtheenergysystemrequiresanintegratedapproachtoinformoptimalenergyinfrastructuredevelopmentsinatimelymanner.Italsorequiressystemicchangesaswemovetowardenergysystemspredominantlysuppliedbyvariablerenewableenergy.
Torealizea1.5°Cscenarioby2050,projectionsestimateafivefoldincreaseintotalrenewablessupplyandatwofoldincreaseintotalelectricitydemand
bythatyear.Furthermore,thereareearlysignsthatpower,heat,andhydrogenarebecomingincreasinglyinterconnectedthroughsector-couplingtechnologieslikeheatpumps,electrolyzers,orhydrogenboilers.
This,inadditiontothegrowingshareofrenewablesandelectrification,furtherincreasestheenergysystem’scomplexity.Therefore,anintegratedapproachcouldhelpensureacost-optimizedandtimelyenergytransition.
PAGE
15
Anet-zeroenergysystemrequirescleanflexibilitysolutions
Achievingnet-zeroemissionsintheenergysectorby2050ispivotalforlimitingglobalwarmingto1.5ºC.Tokeepglobalwarmingbelow1.5ºCcomparedtopreindustriallevels,ascalledforintheParisAgreement,greenhousegas(GHG)emissionsneedtoreachnetzeroby2050.Theenergysectorcurrentlyaccountsforroughlythree-quartersofGHGemissionsandholdsthekeytomitigatingtheworsteffects
ofclimatechange.8Replacingpollutingfossilenergywithrenewableenergysourceslikewindorsolarandmeetingtheenergy-shiftingdemandwithLDESwillhelpsignificantlyreducecarbonemissionswhilecreatingareliableenergysystem.
Thegrowthofsolarandwindgenerationisincreasingthevariabilityoftheenergy
supplymixandtheneedforcleanflexibilitysolutionstosafeguardenergysystemreliability.Ascountriesdecarbonize,theglobalshareofrenewableenergysupplyisexpectedtogrowdramatically.Net-zerotransitionscenariosindicatearoughlythreefoldandfivefoldincreaseinrenewableenergysupply,withrenewablessupplyingupto
30and67percentofglobalenergyin2030and2050,respectively.Furthermore,electrificationisexpectedtoincrease,doublingtheelectricitydemandby2050.9Therefore,thereisagrowingneedforcleanflexibilitysolutionsthatbridgetherenewablessupply-and-demandgapwhilesecuringsystemreliability.EnsuringrenewableelectricitymatchesdemandwithLDEScanhelpprovidetheflexibility,securityofsupply,andresiliencyneededtomeetglobalnet-zerotargets.
Peak
solargeneration
Energyshifting
Industrialheatdemand
Definitionsofenergy
systemreliabilityandflexibility
Energysystemreliabilityistheabilityofenergysystemstodeliverenergyinthequantityandqualitydemandedbyconsumers.
Energysystemflexibilityistheabilityofenergysystemstorespondtosupply-and-demandvariationspromptlyandsupportsreliability.
LDESoffersacleanflexibilitysolutionthatcanacceleraterenewablesbuild-out
LDESprovidesenergysystemflexibility.LDESsolutionsenabletheshiftingofenergyfromtimesofhighsupplytotimesofhighdemand,therebyhelpingpreservesystembalanceandsecuringitsreliability.LDEScanbedeployedcompetitivelytostoreenergyforprolongedperiodsandsustainenergyprovisionformultiplehours,days,orweeks.Suchlong-durationflexibilityisexpectedtobecomeessentialtofirmsupplyastheshareofrenewableenergysupplyincreases.LDES
cancovervariousdurationsdrivenbytechnicalconsiderationsandeconomics.
LDEScanacceleratethebuild-outofrenewablesbyoptimizinginfrastructureutilization.Theenergy-shiftingcapabilityofLDEShasmultiplesystembenefits.First,itcouldreduceenergycurtailmentandrelatedopportunitycostsbyfacilitatingsupply-sideenergystorage.Forexample,theinitialmod-elingofanaluminarefineryusecaseindicatedthatLDEScouldreduceoverallgenerationcapacityneedsby15to30percent.Second,itcouldhelpimproveoverallgridutilizationthroughsupply-and-demand-sideenergy
storage,reducingstressonthegrid.Asaresult,LDEScanbedeployedacrosstheelectricitygrid(forexample,atcriticalcorridorsatcapac-ity)toacceleraterenewables’development.
Lastly,LDEScanprovideothersystembenefitslikestability,withsometechnologiesofferingserviceslikeinertiaprovisionorfrequencyregulation.
Noon Midnight
8UnitedNationsNetZeroCoalition.
9“Netzeroby2050,aroadmapfortheglobalenergysector,”IEA,2021.
LDEScansupportthesecurityofsupply
Theneedtoensureanaffordable,reliable,cleanenergysystemhasbeenheightenedbyrecentchallengesintheenergysector,whichhaveincreasedtheprominenceofenergysecurity
onglobalagendas.Europeisnowfacingelectricityandnaturalgaspricesthatareovertentimeshigherthanhistoricalaverages,drivenbymultiplefactorssuchasthewarinUkraineandtheriseinglobaldemandfollowingtheCOVID-19pandemic.10Globalgasmarketshavealsobeenaffected,causingUSelectricitypricestoincreasethreefoldbetween2020and2022.11
IncorporatingLDEScanhelpincreasethesecurityofsupplyandcreatenewusecasesforrenewableenergy.LDEScanalsounlocknewopportunitiesthatarenotthoroughlyaddressedbyshorter-durationstoragesolutions.Examplesinclude:helpingincreasetheshareofrenew-ablesintheenergymix,providingresiliencetounreliablegridsatlongdurations(likeatisolatedoroff-gridlocations),enablingcost-efficient24/7renewablepowerpurchaseagreements(PPAs),orprovidingstabilityservicestothegrid.Inaddition,TEScansupportnewheatingusecases,namelythewiderelectrificationofheat,reuseofwasteheat,demand-sidemanagement,andlowerrenewablescurtailment.
10DutchTTFGasFutures.
11U.S.EnergyInformationAdministration(EIA).
Therearedifferentoptionstoconsiderforenergysystemflexibility
Withintheelectricitysector,fiveflexibilityoptionscanhelpmatchsupplyanddemand:
Energystorage,includingLi-ionbatteriesanddeployableLDESsolutionssuchasclosedlooppumpedstorage
Dispatchablecapacitysuchashydropower
Renewableenergycurtailment
Transmissionanddistributiongridexpansions
Demand-sidemanagement
Furthermore,systemflexibilityisincreasinglyimportantinrespondingtomarketsupplyfluctuations.
Theheatsectorhasanalogouscleanflexi-bilitysolutionstotheelectricitysector,thoughwithclean-heat-specifictechnologies:
Thermalenergystorage
Dispatchablecapacitylikeclean-fuelboilers
Robustheatinginfrastructurelikedistrictheating
Integratingtheelectricityandheatsectorscanbecriticalinenablingcleanflexibility.Electricityandheatwerehistoricallyconnectedthroughheatenginesinconventionalgenerationplants.Goingforward,electricityandheatareexpectedtobecomemoreintegratedthroughhigheradoptionofpower-to-heattechnologies,suchasheatpumpsorelectricboilers,andrenewableheat-to-powertechnologies,likeconcentratedsolarpower.Theincreasedinterconnectednessofthesectorssupportstheirdecarbonizationandtheintegration
ofrenewables.Furthermore,solutionsthatenhancesectorintegration—likeTES—driveflexibilityby,forinstance,storingenergyattimesofoversupplyanddischargingheatattimesofundersupply.Giventhegrowinginterdepen-denciesofelectricityandheat,anintegratedperspectiveisbecomingrelevanttorealizinganet-zeroenergysystem.
16
PAGE
17
KEYTAKEAWAYS
•Astheshareofvariablerenewableenergygrowssteadily,thereisagreaterneedforcleanflexibilitysolutions,likeLDES,tosecuresystemreliability.
•LDESisessentialforkeepingglobalwarmingbelow1.5°Casitcanhelpacceleratethedevelopmentofrenewables.
•Theintegrationoftheenergysystemthroughsectorcouplingimprovesflexibility,securityofsupply,and,consequently,systemreliabilityandresiliency.
2
TESasanenablertodecarbonizingheat
Decarbonizingtheheatsectoriscrucialtorealizinganet-zeroenergysystemin2050,giventhat,excludingpower,itrepresentsabout45percent
ofallenergy-relatedemissionstoday.
TEScandecarbonizeheatapplicationsbyelectrifyingandfirmingheatwithvariablerenewablesources.
Inaddition,itcanoptimizeheatconsumptioninindustrialprocessesandfacilitatethereuseofwasteheatortheintegrationofcleanheatsources.
PAGE
19
PAGE
22
Mostheatapplicationscanbedecarbonizedthroughelectrifi-cation
Heataccountsforabout45percentofenergy-relatedemissions.Heatingandcoolingusecasesaccountformorethan50percentofglobalenergyconsumptionacrossallsectorsandabout45percentof
globalenergy-relatedCO2emissions,excludingpower(10Gtin2019).Industrialapplicationsaccountforthelargestshareofheatconsump-
tion,at40percentoftotalheatdemand,andcompriseusecasesvaryingfromlow-tohigh-gradeheatingabove1,500°C.Buildingheatingandcoolingisalsoasignificantcontributorataround30percentoftotalheatdemand,12thoughtypicallyatlowertempera-turesaroundorbelow100°C.Lastly,heatingisusedforcookingaswellasdistrictheating(Exhibit2).
H
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家电产品担保合同
- 代理合同协议风险防范
- 降水井施工分包劳务合同
- 房屋买卖合同补充协议的常见问题解答
- 公司借款合同典范
- 购销合同印花税的税率计算器版
- 第二批白酒经销商合同范本
- 服装行业时尚趋势分析与供应链优化策略
- 秩序维护员培训课件
- 防火消防安全教育4
- 《囚歌》教学课件
- 2024年刹车盘行业未来五年发展预测分析报告
- 民法典银行培训课件
- 四年级下册数学单位换算题200道及答案
- 技术总监年度述职报告
- 四年级上学期美术试卷(附答案)
- 机电一体化职业生涯
- 江苏省常州市教育学会2023-2024学年八年级上学期期末学业水平检测英语试题(无答案)
- 山东省烟台市芝罘区2023-2024学年七年级上学期期末数学试卷(含解析)
- 用友U8操作教程2
- 河南省南阳市邓州市2023-2024学年七年级上学期期末数学试题(含答案)
评论
0/150
提交评论