版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省嘉兴市上海外国语大秀洲外国语学校2024届数学八上期末达标检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.已知中,,求证:,运用反证法证明这个结论,第一步应先假设()成立A. B. C. D.2.小明是一位密码翻译爱好者,在他的密码手册中,有这样一条信息:,,,,,分别对应下列六个字:头、爱、我、汕、丽、美,现将因式分解,结果呈现的密码信息可能是()A.我爱美 B.汕头美 C.我爱汕头 D.汕头美丽3.如图,在△ABC中,AB=AC,AD,BE是△ABC的两条中线,P是AD上的一个动点,则下列线段的长等于CP+EP最小值的是()A.AC B.AD C.BE D.BC4.甲、乙两队参加了“端午情,龙舟韵”赛龙舟比赛,两队在比赛时的路程(米)与时间(秒)之间的函数图象如图所示,请你根据图象判断,下列说法正确的是()A.乙队率先到达终点B.甲队比乙队多走了米C.在秒时,两队所走路程相等D.从出发到秒的时间段内,乙队的速度慢5.小颖在做下面的数学作业时,因钢笔漏墨水,不小心将部分字迹污损了,作业过程如下(涂黑部分即为污损部分):如图,OP平分∠AOB,MN∥OB,试说明:OM=MN.理由:因为OP平分∠AOB,所以■,又因为MN∥OB,所以■,故∠1=∠3,所以OM=MN.小颖思考:污损部分应分别是以下四项中的两项:①∠1=∠2;②∠2=∠3;③∠3=∠4;④∠1=∠4.那么她补出来的部分应是()A.①④ B.②③C.①② D.③④6.以下列各组线段为边,能组成三角形的是()A.2cm,5cm,8cmB.3cm,3cm,6cmC.3cm,4cm,5cmD.1cm,2cm,3cm7.以下列各组线段为边,能构成直角三角形的是()A.8cm,9cm,10cm B.cm,cm,cmC.1cm,2cm,cm D.6cm,7cm,8cm8.正比例函数的函数值随的增大而减小,则一次函数的图象大致是()A. B. C. D.9.若不等式组,只有三个正整数解,则a的取值范围为()A. B. C. D.10.一次函数的图象经过点,且随的增大而减小,则的值是().A.2 B. C.0 D.11.如图,在△ABC中,AB=AC,D是BC的中点,AC的垂直平分线交AC,AD,AB于点E,O,F,则图中全等三角形的对数是()A.1对 B.2对 C.3对 D.4对12.下列各式:①3+3=6;②=1;③+==2;④=2;其中错误的有().A.3个 B.2个 C.1个 D.0个二、填空题(每题4分,共24分)13.计算:____,_____.14.已知x,y满足方程组,则9x2﹣y2的值为_____.15.分解因式:4mx2﹣my2=_____.16.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为7cm,则正方形A,B,C,D的面积之和为___________cm1.17.如图,在△ABC中,∠A=70°.按下列步骤作图:①分别以点B,C为圆心,适当长为半径画弧,分别交BA,BC,CA,CB于点D,E,F,G;②分别以点D,E为圆心,大于DE为半径画弧,两弧交于点M;③分别以点F,G为圆心,大于FG为半径画弧,两弧交于点N;④作射线BM交射线CN于点O.则∠BOC的度数是_____.18.当x为_____时,分式的值为1.三、解答题(共78分)19.(8分)在正方形ABCD中,点E是射线BC上的点,直线AF与直线AB关于直线AE对称,直线AF交射线CD于点F.(1)如图①,当点E是线段BC的中点时,求证:AF=AB+CF;(2)如图②,当∠BAE=30°时,求证:AF=2AB﹣2CF;(3)如图③,当∠BAE=60°时,(2)中的结论是否还成立?若不成立,请判断AF与AB、CF之间的数量关系,并加以证明.20.(8分)列方程解应用题:某校八年级(一)班和(二)班的同学,在双休日参加修整花卉的实践活动.已知(一)班比(二)班每小时多修整2盆花,(一)班修整66盆花所用的时间与(二)班修整60盆花所用时间相等.(一)班和(二)班的同学每小时各修整多少盆花?21.(8分)探索与证明:(1)如图①,直线经过正三角形的顶点,在直线上取点,,使得,.通过观察或测量,猜想线段,与之间满足的数量关系,并予以证明;(2)将(1)中的直线绕着点逆时针方向旋转一个角度到如图②的位置,,.通过观察或测量,猜想线段,与之间满足的数量关系,并予以证明.22.(10分)已知:△ABC中,∠ACB=90°,AC=BC.(1)如图1,点D在BC的延长线上,连AD,过B作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC=3MC,请直接写出的值.23.(10分)如图,已知AB∥DE.∠ABC=70°,∠CDE=140°,求∠C的度数.24.(10分)列方程解应用题:第19届亚洲运动会将于2022年9月10日至25日在杭州举行,杭州奥体博览城将成为杭州2022年亚运会的主场馆,某工厂承包了主场馆建设中某一零件的生产任务,需要在规定时间内生产24000个零件,若每天比原计划多生产30个零件,则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数.(2)为了提前完成生产任务,工厂在安排原有工人按原计划正常生产的同时,引进5组机器人生产流水线共同参与零件生产,已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多,按此测算,恰好提前两天完成24000个零件的生产任务,求原计划安排的工人人数.25.(12分)如图,点、、、在一条直线上,,,,交于.(1)求证:.(2)求证:.26.如图,在平面直角坐标系中,四边形OABC的顶点O是坐标原点,点A在第一象限,点C在第四象限,点B在x轴的正半轴上.∠OAB=90°且OA=AB,OB=6,OC=1.点P是线段OB上的一个动点(点P不与点O,B重合),过点P的直线与y轴平行,直线交边OA或边AB于点Q,交边OC或边BC于点R.设点P的横坐标为t,线段QR的长度为m.已知t=4时,直线恰好过点C.(1)求点A和点B的坐标;(2)当0<t<3时,求m关于t的函数关系式;(3)当m=3.1时,请直接写出点P的坐标.
参考答案一、选择题(每题4分,共48分)1、A【分析】根据反证法的步骤,第一步要从结论的反面出发假设结论,即可判断.【题目详解】解:的反面为故选A.【题目点拨】此题考查的是反证法的步骤,掌握反证法的第一步为假设结论不成立,并找到结论的反面是解决此题的关键.2、C【分析】先提取公因式(),然后再利用平方法公式因式分解可得.【题目详解】故对应的密码为:我爱汕头故选:C【题目点拨】本题考查因式分解,注意,当式子可提取公因式时,我们在因式分解中,往往先提取公因式.3、C【分析】如图连接PB,只要证明PB=PC,即可推出PC+PE=PB+PE,由PE+PB≥BE,可得P、B、E共线时,PB+PE的值最小,最小值为BE的长度.【题目详解】解:如图,连接PB,
∵AB=AC,BD=CD,
∴AD⊥BC,
∴PB=PC,
∴PC+PE=PB+PE,
∵PE+PB≥BE,
∴P、B、E共线时,PB+PE的值最小,最小值为BE的长度,
故选:C.【题目点拨】本题考查轴对称-最短路线问题,等腰三角形的性质、线段的垂直平分线的性质,解题的关键是灵活运用所学知识解决问题.4、C【分析】根据函数图形,结合选项进行判断,即可得到答案.【题目详解】解:、由函数图象可知,甲走完全程需要秒,乙走完全程需要秒,甲队率先到达终点,本选项错误;、由函数图象可知,甲、乙两队都走了米,路程相同,本选项错误;、由函数图象可知,在秒时,两队所走路程相等,均为米,本选项正确;、由函数图象可知,从出发到秒的时间段内,甲队的速度慢,本选项错误;故选.【题目点拨】本题考查函数图象,解题的关键是读懂函数图象的信息.5、C【解题分析】∵OP平分∠AOB,∴∠1=∠2,∵MN∥OB,∴∠2=∠3,所以补出来的部分应是:①、②.故选C.点睛:掌握平行线的性质、角平分线的性质.6、C【解题分析】三角形中,任意两边之和大于第三边,任意两边之差小于第三边,据此进行解答即可.【题目详解】解:2cm+5cm<8cm,A不能组成三角形;3cm+3cm=6cm,B不能组成三角形;3cm+4cm>5cm,C能组成三角形;1cm+2cm=3cm,D不能组成三角形;故选:C.【题目点拨】本题考查了三角形的三边关系.7、C【解题分析】根据勾股定理的逆定理对四组数据进行逐一判断即可.【题目详解】A.∵82+92≠102,∴不能构成直角三角形;B.∵,∴不能构成直角三角形;C.∵,∴能构成直角三角形;D.∵62+72≠82,∴不能构成直角三角形.故选C.【题目点拨】本题考查了用勾股定理的逆定理判断三角形的形状,即只要三角形的三边满足a2+b2=c2,则此三角形是直角三角形.8、A【分析】根据的函数值随的增大而减小,得到k0,由此判定所经过的象限为一、二、三象限.【题目详解】∵的函数值随的增大而减小,∴k0,∴经过一、二、三象限,A选项符合.故选:A.【题目点拨】此题考查一次函数的性质,y=kx+b中,k0时图象过一三象限,k0时图象过二四象限;b0时图象交y轴于正半轴,b0时图象交y轴于负半轴,掌握特点即可正确解答.9、A【解题分析】解不等式组得:a<x≤3,因为只有三个整数解,∴0≤a<1;故选A.10、D【分析】将点代入一次函数中,可得,随的增大而减小,可得,计算求解即可.【题目详解】∵一次函数的图象经过点,∴,解得:,∵随的增大而减小,∴<0,解得:<1,∴,故选:D.【题目点拨】本题考查了一次函数图象与系数的关系,明确:①k>0,y随x的增大而增大;当k<0时,y随x的增大而减小.11、D【题目详解】试题分析:∵D为BC中点,∴CD=BD,又∵∠BDO=∠CDO=90°,∴在△ABD和△ACD中,,∴△ABD≌△ACD;∵EF垂直平分AC,∴OA=OC,AE=CE,在△AOE和△COE中,,∴△AOE≌△COE;在△BOD和△COD中,,∴△BOD≌△COD;在△AOC和△AOB中,,∴△AOC≌△AOB;所以共有4对全等三角形,故选D.考点:全等三角形的判定.12、A【解题分析】3+3=6,错误,无法计算;②=1,错误;③+==2不能计算;④=2,正确.故选A.二、填空题(每题4分,共24分)13、【分析】根据零指数幂、负整数指数幂的意义可计算,根据积的乘方、以及单项式的除法可计算.【题目详解】1×=,.故答案为:,【题目点拨】本题考查了零指数幂、负整数指数幂、积的乘方、以及单项式的除法,熟练掌握运算法则是解答本题的关键.14、80【分析】利用平方差公式将9x2﹣y2进行转换成(3x+y)(3x﹣y)的形式,再将方程组代入原式求值即可.【题目详解】由方程组得:3x﹣y=10,3x+y=8,则原式=(3x+y)(3x﹣y)=80,故答案为:80【题目点拨】本题考查了方程组的问题,掌握平方差公式是解题的关键.15、m(2x+y)(2x﹣y)【分析】先提取公因式,然后利用平方差公式进行因式分解.【题目详解】解:原式=m(4x2﹣y2)=m(2x+y)(2x﹣y),故答案为:m(2x+y)(2x﹣y).【题目点拨】掌握因式分解的几种方法为本题的关键.16、2【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【题目详解】解:如图,∵所有的三角形都是直角三角形,所有的四边形都是正方形,∴正方形A的面积=a1,正方形B的面积=b1,正方形C的面积=c1,正方形D的面积=d1,又∵a1+b1=x1,c1+d1=y1,∴正方形A、B、C、D的面积和=(a1+b1)+(c1+d1)=x1+y1=71=2cm1.故答案为:2.【题目点拨】本题考查了勾股定理,注意掌握直角三角形中,两直角边的平方和等于斜边的平方是解答本题的关键.17、125°【分析】根据题意可知,尺规作图所作的是角平分线,再根据三角形内角和的性质问题可解.【题目详解】解:∵∠A=70°,∴∠ABC+∠ACB=180°﹣70°=110°,由作图可知OB平分∠ABC,CO平分∠ACB,∴∠OBC+∠OCB=∠ABC+∠ACB=(∠ABC+∠ACB)=55°,∴∠BOC=180°﹣(∠OBC+∠OCB)=125°,故答案为125°.【题目点拨】本题考查作图-基本作图,角平分线性质和三角形内角和的性质,解题的关键是熟练掌握基本知识.18、2【解题分析】分式的值是1的条件是,分子为1,分母不为1.【题目详解】∵3x-6=1,
∴x=2,
当x=2时,2x+1≠1.
∴当x=2时,分式的值是1.
故答案为2.【题目点拨】本题考查的知识点是分式为1的条件,解题关键是注意的是分母不能是1.三、解答题(共78分)19、(1)证明见解析;(2)证明见解析;(3)成立,理由见解析【分析】(1)由折叠的性质得出AG=AB,BE=GE,进而用HL判断出Rt△EGF≌Rt△ECF,代换即可得出结论;
(2)利用含30°的直角三角形的性质即可证明;
(3)先判断出△AIF为等边三角形,得出AI=FI=AF,再代换即可得出结论.【题目详解】(1)如图,过点E作EG⊥AF于点G,连接EF.由折叠性质知,△ABE≌△AGE,∴AG=AB,BE=GE,∵BE=CE,∴GE=CE,在Rt△EGF和Rt△ECF中,,∴Rt△EGF≌Rt△ECF,(HL)∴FG=FC,∵AF=AG+FG,∴AF=AB+FC;(2)如图,延长AF、BC交于点H.在正方形ABCD中,∠B=90°,由折叠性质知,∠BAE=∠HAE=30°,∴∠H=90°-∠BAE-∠HAE=30°,Rt△ABH中,∠B=90°,∠H=30°,∴AH=2AB,同理:FH=2FC,∵AF=AH﹣FH,∴AF=2AB﹣2FC;(3)由折叠知,∠BAE=∠FAE=60°,
∴∠DAE=∠DAF=30°,又∵AD⊥IF,
∴△AIF为等边三角形,
∴AF=AI=FI,
由(2)可得AE=2AB,
IE=2IC,
∵IC=FC-FI,
∴IC=FC-AF,
∴IE=2FC-2AF,
∵AI=AE-IE,
∴AF=2AB-(2FC-2AF)
=2FC-2AB.【题目点拨】本题主要考查了正方形的性质,折叠的性质,直角三角形的性质,等边三角形的性质,解本题的关键是找出线段之间的关系.20、(一)班同学每小时修整22盆花,(二)班同学每小时修整20盆花.【分析】根据等量关系:工作时间=工作总量÷工作效率,根据关键句“(一)班修整66盆花所用的时间与(二)班修整60盆花所用时间相等”可列出方程;【题目详解】解:设(一)班每小时修整x盆花,则(二)班每小时修整x-2盆花,根据题意得:解得:x=22经检验:x=22是原分式方程的解.∴x-2=20答:(一)班同学每小时修整22盆花,(二)班同学每小时修整20盆花.【题目点拨】此题主要考查了分式方程的应用,找到关键描述语,找到等量关系是解决问题的关键.21、(1)DE=BD+CE,证明见解析;(2)CE=BD+DE,证明见解析【分析】(1)根据等边三角形的性质可得AB=CA,∠BAC=60°,然后根据已知条件可得,并且可证出∠ABD=∠CAE,利用AAS即可证出△ABD≌△CAE,从而得出BD=AE,AD=CE,然后根据DE=AE+AD和等量代换即可得出结论;(2)根据等边三角形的性质可得AB=CA,∠BAC=60°,然后根据已知条件可得,并且可证出∠ABD=∠CAE,利用AAS即可证出△ABD≌△CAE,从而得出BD=AE,AD=CE,然后根据AD=AE+DE和等量代换即可得出结论;【题目详解】解:(1)DE=BD+CE,证明如下∵△ABC为等边三角形∴AB=CA,∠BAC=60°∵,∴∴∠ABD+∠BAD=180°-∠ADB=120°∠CAE+∠BAD=180°-∠BAC=120°∴∠ABD=∠CAE在△ABD和△CAE中∴△ABD≌△CAE∴BD=AE,AD=CE∴DE=AE+AD=BD+CE;(2)CE=BD+DE,证明如下∵△ABC为等边三角形∴AB=CA,∠BAC=60°∵,∴∴∠ABD+∠BAD=180°-∠ADB=60°∠CAE+∠BAD=∠BAC=60°∴∠ABD=∠CAE在△ABD和△CAE中∴△ABD≌△CAE∴BD=AE,AD=CE∵AD=AE+DE∴CE=BD+DE.【题目点拨】此题考查的是等边三角形的性质和全等三角形的判定及性质,掌握等边三角形的性质、利用AAS判定两个三角形全等和全等三角形的对应边相等是解决此题的关键.22、(1)证明见解析;(2)结论:BD=2CF.理由见解析;(3).【分析】(1)欲证明BF=AD,只要证明△BCF≌△ACD即可;(2)结论:BD=2CF.如图2中,作EH⊥AC于H.只要证明△ACD≌△EHA,推出CD=AH,EH=AC=BC,由△EHF≌△BCF,推出CH=CF即可解决问题;(3)利用(2)中结论即可解决问题.【题目详解】(1)证明:如图1中,∵BE⊥AD于E,∴∠AEF=∠BCF=90°,∵∠AFE=∠CFB,∴∠DAC=∠CBF,∵BC=CA,∴△BCF≌△ACD,∴BF=AD.(2)结论:BD=2CF.理由:如图2中,作EH⊥AC于H.∵∠AHE=∠ACD=∠DAE=90°,∴∠DAC+∠ADC=90°,∠DAC+∠EAH=90°,∴∠DAC=∠AEH,∵AD=AE,∴△ACD≌△EHA,∴CD=AH,EH=AC=BC,∵CB=CA,∴BD=CH,∵∠EHF=∠BCF=90°,∠EFH=∠BFC,EH=BC,∴△EHF≌△BCF,∴FH=CF,∴BC=CH=2CF.(3)如图3中,同法可证BD=2CM.∵AC=3CM,设CM=a,则AC=CB=3a,BD=2a,∴.【题目点拨】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.23、30°.【分析】延长ED到M,交BC于F,根据平行线的性质求出∠MFC=∠B=70°,求出∠FDC=40°,根据三角形外角性质得出∠C=∠MFC﹣∠MDC,代入求出即可.【题目详解】解:如图,延长ED到M,交BC于F,∵AB∥DE,∠ABC=70°,∴∠MFC=∠B=70°,∵∠CDE=140°,∴∠FDC=180°﹣140°=40°,∴∠C=∠MFC﹣∠MDC=70°﹣40°=30°.【题目点拨】本题考查了三角形外角的性质以及平行线的性质,解此题的关键是作出辅助线并求出∠MFC的度数.24、(1)原计划每天生产的零件2400个,规定的天数是10天;(2)原计划安排的工人人数480人.【分析】(1)根据题意可设原计划每天生产的零件x个,根据时间是一定的,列出方程求得原计划每天生产的零件个数,再根据工作时间=工作总量÷工作效率,即可求得规定的天数;
(2)设原计划安排的工人人数为y人,根据等量关系:恰好提前两天完成2400个零件的生产任务,列出方程求解即可.【题目详解】(1)解:设原计划每天生产的零件x个,由题意得,得:x=2400经检验,x=2400是原方程的根,且符合题意.∴规定的天数为24000÷2400=10(天).答:原计划每天生产的零件2400个,规定的天数是10天;(2)设原计划安排的工人人数为y人,依题意有[5×20×(1+20%)×+2400]×(10﹣2)=24000,解得y=480,经检验,y=480是原方程的根,且符合题意.答:原计划安排的工人人数480人.【题目点拨】本题考查了分式方程的应用,一元一次方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.25、(1)见解析;(2)见解析.【分析】(1)由平行线的性质得出∠B=∠E,∠BCA=∠EFD,证出BC=EF,即可得出结论;
(2)由全等三角形的性质得出AC=DF,∠ACB=∠DFE,证明△ACO≌△DFO(AAS),即可得出结论.【题目详解】(1)证明:∵AB∥DE,
∴∠B=∠E,
∵AC∥FD,
∴∠BCA=∠EFD,
∵FB=EC,
∴BC=EF,在△AB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年床上用品品牌代理合同
- 2024医院药品零售许可合同
- 2024年建筑合同纠纷预防及处理办法
- 2024年度IT企业软件许可使用合同
- 2024年度搬厂工程机械设备租赁合同
- 2024年度委托加工合同:甲乙双方在二零二四年就某产品委托加工的详细条款
- 2024年度量子科技实验室建设安装工程分包合同
- 2024年度智能停车安防监控系统安装合同
- 2024展厅装饰装修合同范文
- 2024年商标许可使用合同商标范围
- 四年级上册书法课件- 10兰叶撇 |通用版 (共10张PPT)
- 消防水池 (有限空间)作业安全告知牌及警示标志
- 大学政府采购项目验收报告(货物服务类)
- 港口码头常用安全安全警示标志
- 统编小学语文四年级上册第八单元教材解读
- 热质交换原理与设备复习题(题库)(考试参考)
- 海上风电施工船舶安全管理办法
- 公安警察工作总结汇报PPT模板
- 《砼路面施工方案》word版
- 文书档案归档及整理规范PPT幻灯片课件
- MBTI十六种人格优缺点总结
评论
0/150
提交评论