版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省珠海市紫荆中学八年级数学第一学期期末统考模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.在以下四个图案中,是轴对称图形的是()A. B. C. D.2.如图,等边三角形ABC中,D、E分别为AB、BC边上的两动点,且总使AD=BE,AE与CD交于点F,AG⊥CD于点G,则=()A. B.2 C. D.3.已知直线y=2x与y=﹣x+b的交点(﹣1,a),则方程组的解为()A. B. C. D.4.如图是一个的方阵,其中每行、每列的两数和相等,则可以是()A.-2 B. C.0 D.5.在代数式中,分式共有().A.2个 B.3个 C.4个 D.5个6.以下列各组线段为边,能组成三角形的是()A.2cm、2cm、4cm B.2cm、6cm、3cmC.8cm、6cm、3cm D.11cm、4cm、6cm7.下列各组图形中,是全等形的是()A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形8.平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(2,﹣3)B.(﹣2,3)C.(﹣2,﹣3)D.(2,3)9.下列实数中,无理数是()A.-1.01 B. C.5 D.10.已知则的值为:A.1.5 B. C. D.二、填空题(每小题3分,共24分)11.如图,点B,A,D,E在同一条直线上,AB=DE,BC∥EF,请你利用“ASA”添加一个条件,使△ABC≌△DEF,你添加的条件是_____.12.平面直角坐标系中,与点(4,-3)关于x轴对称的点是______.13.若分式的值是0,则x的值为________.14.若一个三角形两边长分别是和,则第三边的长可能是________.(写出一个符合条件的即可)15.的立方根是________.16.若规定用符号表示一个实数的整数部分,例如按此规定._______________________.17.小明用计算一组数据的方差,那么=____.18.分解因式:3m2﹣6mn+3n2=_____.三、解答题(共66分)19.(10分)如图1,是直角三角形,,的角平分线与的垂直平分线相交于点.(1)如图2,若点正好落在边上.①求的度数;②证明:.(2)如图3,若点满足、、共线.线段、、之间是否满足,若满足请给出证明;若不满足,请说明理由.20.(6分)某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.(1)求这两种品牌计算器的单价;(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器超出5个的部分按原价的七折销售,设购买x个A品牌的计算器需要y1元,购买x(x>5)个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;(3)当需要购买50个计算器时,买哪种品牌的计算器更合算?21.(6分)如图所示,已知中,,,,、是的边上的两个动点,其中点从点开始沿方向运动,且速度为每秒,点从点开始沿方向运动,且速度为每秒,它们同时出发,设出发的时间为.(1)则____________;(2)当为何值时,点在边的垂直平分线上?此时_________?(3)当点在边上运动时,直接写出使成为等腰三角形的运动时间.22.(8分)阅读下列材料,并按要求解答.(模型建立)如图①,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA.(模型应用)应用1:如图②,在四边形ABCD中,∠ADC=90°,AD=6,CD=8,BC=10,AB2=1.求线段BD的长.应用2:如图③,在平面直角坐标系中,纸片△OPQ为等腰直角三角形,QO=QP,P(4,m),点Q始终在直线OP的上方.(1)折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,当m=2时,求Q点的坐标和直线l与x轴的交点坐标;(2)若无论m取何值,点Q总在某条确定的直线上,请直接写出这条直线的解析式.23.(8分)如图,已知点B、E、C、F在一条直线上,且AB=DE,BE=CF,AB∥DE.求证:AC∥DF24.(8分)已知:如图,在△ABC中,CD⊥AB于点D,E是AC上一点且∠1+∠2=90°.求证:DE∥BC.25.(10分)如图,方格纸上每个小方格的边长都是1,△ABC是通过△A1B1C1旋转得到.(1)在图中标出旋转中心点O;(1)画出△ABC向下平移4个单位长度,再向右平移4个单位长度得到的△A1B1C1.26.(10分)小甘到文具超市去买文具.请你根据如图中的对话信息,求中性笔和笔记本的单价分别是多少元?
参考答案一、选择题(每小题3分,共30分)1、A【分析】根据轴对称图形的概念对各选项分析判断利用排除法求解.【题目详解】A、是轴对称图形,故本选项正确;
B、不是轴对称图形,故本选项错误;
C、不是轴对称图形,故本选项错误;
D、不是轴对称图形,故本选项错误.
故选:A.【题目点拨】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2、A【解题分析】∵△ABC是等边三角形,∴∠B=∠BCA=60°,AC=BC=AB,又∵AD=BE,∴AB-AD=BC-BE,即BD=CE,∴△ACE≌△CBD,∴∠CAE=∠BCD,又∵∠AFG=∠ACF+∠CAE,∴∠AFG=∠ACF+∠CAE=∠ACF+∠BCD=∠BCA=60°,∵AG⊥CD于点G,∴∠AGF=90°,∴∠FAG=30°,∴FG=AF,∴.故选A.3、D【分析】根据一次函数图象上点的坐标特征确定两直线的交点坐标,然后根据函数图象交点坐标为两函数解析式组成的方程组的解选择答案.【题目详解】解:把(﹣1,a)代入y=2x得a=﹣2,则直线y=2x与y=﹣x+b的交点为(﹣1,﹣2),则方程组的解为.故选D.【题目点拨】本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.4、B【分析】直接利用零指数幂的性质以及绝对值的性质和立方根的性质分别化简得出答案.【题目详解】解:由题意可得:a+|-2|=则a+2=3,
解得:a=1,
故a可以是.
故选:B.【题目点拨】此题主要考查了实数运算,正确化简各数是解题关键.5、B【分析】根据分式定义:如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式进行分析即可.【题目详解】解:代数式是分式,共3个,故选:B.【题目点拨】此题主要考查了分式定义,关键是掌握分式的分母必须含有字母,而分子可以字母,也可以不含字母,亦即从形式上看是的形式,从本质上看分母必须含有字母.6、C【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边.【题目详解】A.∵2+2=4,∴2cm、2cm、4cm不能组成三角形,故不符合题意;B.∵2+3<6,∴2cm、6cm、3cm不能组成三角形,故不符合题意;C.∵3+6>8,∴8cm、6cm、3cm能组成三角形,故符合题意;D.∵4+6<11,∴11cm、4cm、6cm不能组成三角形,故不符合题意;故选C.【题目点拨】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.7、B【解题分析】试题解析:A、两个含60°角的直角三角形,缺少对应边相等,所以不是全等形;B、腰对应相等的两个等腰直角三角形,符合AAS或ASA,或SAS,是全等形;C、边长为3和4的两个等腰三角形有可能是3,3,4或4,4,3不一定全等对应关系不明确不一定全等;D、一个钝角相等的两个等腰三角形.缺少对应边相等,不是全等形.故选B.【题目点拨】本题主要考查了三角形全等的判定方法;需注意:判定两个三角形全等时,必须有边的参与,还要找准对应关系.8、C【解题分析】根据:关于x轴对称点的坐标特点:横坐标相同,纵坐标互为相反数;可得.【题目详解】解:∵关于x轴对称点的坐标特点:横坐标相同,纵坐标互为相反数,∴点P(﹣2,3)关于x轴的对称点坐标是(﹣2,﹣3),故答选:C.【题目点拨】关于x轴对称点的坐标特点:横坐标相同,纵坐标互为相反数;9、D【解题分析】无限不循环小数是无理数,由此即可判定选项.【题目详解】解:-1.01,,5是有理数,是无理数,故选D.【题目点拨】本题是对无理数定义的考查,熟练掌握无理数的定义是解决本题的关键.10、B【解题分析】试题解析:∵,∴a=b,∴.故选B.考点:比例的性质.二、填空题(每小题3分,共24分)11、【分析】由平行线的性质得出∠B=∠E,由ASA即可得出△ABC≌△DEF.【题目详解】解:添加条件:,理由如下:∵BC∥EF,∴∠B=∠E,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA);故答案为:【题目点拨】本题主要考查利用ASA判定三角形全等,找到另外一组相等角是解题的关键.12、(4,3).【解题分析】试题分析:由关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,-y),可得:与点(4,-3)关于x轴对称的点是(4,3).考点:关于x轴、y轴对称的点的坐标.13、3【分析】根据分式为0的条件解答即可,【题目详解】因为分式的值为0,所以∣x∣-3=0且3+x≠0,∣x∣-3=0,即x=3,3+x≠0,即x≠-3,所以x=3,故答案为3【题目点拨】本题考查分式值为0的条件:分式的分子为0,且分母不为0,熟练掌握分式值为0的条件是解题关键.14、1(1<x<3范围内的数均符合条件)【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,可求第三边长的范围.即可得出答案.【题目详解】设第三边长为x,则由三角形三边关系定理得出:1-1<x<1+1解得:1<x<3故答案可以为1<x<3范围内的数,比如1.【题目点拨】本题主要考查三角形三边关系:在三角形中任意两边之和大于第三边,任意两边之差小于第三边,掌握这一关系是解题的关键.15、-3.【分析】根据立方根的定义求解即可.【题目详解】解:-27的立方根是-3,故答案为-3.【题目点拨】本题考查了立方根的定义,属于基础题型,熟知立方根的概念是解题的关键.16、1【分析】先求出取值范围,从而求出其整数部分,即可得出结论.【题目详解】解:∵∴∴的整数部分为1∴1故答案为:1.【题目点拨】此题考查的是求无理数的整数部分,掌握实数比较大小的方法是解决此题的关键.17、1【分析】由方差的计算可得这组数据的平均数,然后利用平均数的计算方法求解.【题目详解】解:由题意可得,这组数据共10个数,且它们的平均数是3∴=10×3=1故答案为:1.【题目点拨】此题主要考查了方差与平均数的计算,关键是正确掌握方差的计算公式.一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=.18、3(m-n)2【解题分析】原式==故填:三、解答题(共66分)19、(1)①;②见解析;(2)满足,证明见解析【分析】(1)①由角平分线与垂直平分线的性质证明:,再利用三角形的内角和定理可得答案;②先利用角平分线的性质证明:,再利用证明从而可得结论;(2)过点作于点,证明:,再证明,可得,再利用线段的和差可得答案.【题目详解】(1)①解:∵平分∴又∵是的垂直平分线∴∴,∴又∵∴;②证明:∵平分,且,∴,在中,∴,;(2)解:线段、、之间满足,证明如下:过点作于点,∵是的垂直平分线,且、、共线∴也是的垂直平分线∴又∴是等腰直角三角形.∴∴是等腰直角三角形.∴∵平分,且,∴∴,在和中∴∴,∴.【题目点拨】本题考查的是三角形的内角和定理,角平分线的性质,垂直平分线的性质,直角三角形全等的判定与性质,含的直角三角形的性质,掌握以上知识是解题的关键.20、(1)A品牌计算器每个30元,B品牌计算器每个32元;(2)y1=24x,y2=22.4x+48(x>5);(3)B品牌合算.【解题分析】(1)根据题意列出二元一次方程组,解方程组即可得到答案;(2)根据题意用含x的代数式表示出y1、y2即可;(3)把x=50代入两个函数关系式进行计算,比较得到答案.【题目详解】(1)设A、B两种品牌的计算器的单价分别为x、y元,由题意得:解得:.答:A.B两种品牌的计算器的单价分别为30元、32元;(2)y1=24x,y2=160+(x﹣5)×32×0.7=22.4x+48(x>5);(3)当x=50时,y1=24x=1200,y2=22.4x+48=1.∵1<1200,∴买B品牌的计算器更合算.【题目点拨】本题考查了二元一次方程组的应用和一次函数的应用,正确找出等量关系列出方程组并正确解出方程组、掌握一次函数的性质是解题的关键.21、(1)11;(1)t=11.5s时,13cm;(3)11s或11s或13.1s【分析】(1)由勾股定理即可得出结论;(1)由线段垂直平分线的性质得到PC=PA=t,则PB=16-t.在Rt△BPC中,由勾股定理可求得t的值,判断出此时,点Q在边AC上,根据CQ=1t-BC计算即可;(3)用t分别表示出BQ和CQ,利用等腰三角形的性质可分BQ=BC、CQ=BC和BQ=CQ三种情况,分别得到关于t的方程,可求得t的值.【题目详解】(1)在Rt△ABC中,BC(cm).故答案为:11;(1)如图,点P在边AC的垂直平分线上时,连接PC,∴PC=PA=t,PB=16-t.在Rt△BPC中,,即,解得:t=.∵Q从B到C所需的时间为11÷1=6(s),>6,∴此时,点Q在边AC上,CQ=(cm);(3)分三种情况讨论:①当CQ=BQ时,如图1所示,则∠C=∠CBQ.∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10,∴BC+CQ=11,∴t=11÷1=11(s).②当CQ=BC时,如图1所示,则BC+CQ=14,∴t=14÷1=11(s).③当BC=BQ时,如图3所示,过B点作BE⊥AC于点E,则BE,∴CE=7.1.∵BC=BQ,BE⊥CQ,∴CQ=1CE=14.4,∴BC+CQ=16.4,∴t=16.4÷1=13.1(s).综上所述:当t为11s或11s或13.1s时,△BCQ为等腰三角形.【题目点拨】本题考查了勾股定理、等腰三角形的性质、方程思想及分类讨论思想等知识.用时间t表示出相应线段的长,化“动”为“静”是解决这类问题的一般思路,注意方程思想的应用.22、模型建立:见解析;应用1:2;应用2:(1)Q(1,3),交点坐标为(,0);(2)y=﹣x+2【分析】根据AAS证明△BEC≌△CDA,即可;应用1:连接AC,过点B作BH⊥DC,交DC的延长线于点H,易证△ADC≌△CHB,结合勾股定理,即可求解;应用2:(1)过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP相交于点H,易得:△OKQ≌△QHP,设H(2,y),列出方程,求出y的值,进而求出Q(1,3),再根据中点坐标公式,得P(2,2),即可得到直线l的函数解析式,进而求出直线l与x轴的交点坐标;(2)设Q(x,y),由△OKQ≌△QHP,KQ=x,OK=HQ=y,可得:y=﹣x+2,进而即可得到结论.【题目详解】如图①,∵AD⊥ED,BE⊥ED,∠ACB=90°,∴∠ADC=∠BEC=90°,∴∠ACD+∠DAC=∠ACD+∠BCE=90°,∴∠DAC=∠BCE,∵AC=BC,∴△BEC≌△CDA(AAS);应用1:如图②,连接AC,过点B作BH⊥DC,交DC的延长线于点H,∵∠ADC=90°,AD=6,CD=8,∴AC=10,∵BC=10,AB2=1,∴AC2+BC2=AB2,∴∠ACB=90°,∵∠ADC=∠BHC=∠ACB=90°,∴∠ACD=∠CBH,∵AC=BC=10,∴△ADC≌△CHB(AAS),∴CH=AD=6,BH=CD=8,∴DH=6+8=12,∵BH⊥DC,∴BD==2;应用2:(1)如图③,过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP相交于点H,由题意易:△OKQ≌△QHP(AAS),设H(2,y),那么KQ=PH=y﹣m=y﹣2,OK=QH=2﹣KQ=6﹣y,又∵OK=y,∴6﹣y=y,y=3,∴Q(1,3),∵折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,∴点M是OP的中点,∵P(2,2),∴M(2,1),设直线QM的函数表达式为:y=kx+b,把Q(1,3),M(2,1),代入上式得:,解得:∴直线l的函数表达式为:y=﹣2x+5,∴该直线l与x轴的交点坐标为(,0);(2)∵△OKQ≌△QHP,∴QK=PH,OK=HQ,设Q(x,y),∴KQ=x,OK=HQ=y,∴
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国单孔子单把面盆水咀市场调查研究报告
- 2024版设备购买协议
- 2025年度疫情防控应急物资储备中心n95口罩采购合同范本3篇
- 二零二五年度货运司机劳务派遣合同3篇
- 2025年度大豆绿色种植推广合作合同范本3篇
- 2025年度绿色有机西瓜产地直销合作合同范本3篇
- 2025年度不锈钢板材国际贸易结算及风险管理合同3篇
- 2024行政合同争议调解程序:如何有效运用行政优先权3篇
- 2025年度WPS合同管理平台定制开发与实施合同3篇
- 二零二五年甘肃离岗创业人员社保接续与待遇保障合同3篇
- 中国的世界遗产智慧树知到期末考试答案2024年
- 2023年贵州省铜仁市中考数学真题试题含解析
- 世界卫生组织生存质量测量表(WHOQOL-BREF)
- 《叶圣陶先生二三事》第1第2课时示范公开课教学PPT课件【统编人教版七年级语文下册】
- 某送电线路安全健康环境与文明施工监理细则
- GB/T 28885-2012燃气服务导则
- PEP-3心理教育量表-评估报告
- 控制性详细规划编制项目竞争性磋商招标文件评标办法、采购需求和技术参数
- 《增值税及附加税费申报表(小规模纳税人适用)》 及其附列资料-江苏税务
- 中南民族大学中文成绩单
- 危大工程安全管理措施方案
评论
0/150
提交评论