版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届辽宁省盘锦市大洼区八上数学期末综合测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.点A(3,3﹣π)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A. B. C. D.3.已知的外角中,若,则等于()A.50° B.55° C.60° D.65°4.若分式有意义,则实数的取值范围是()A. B. C. D.5.一个正多边形,它的每一个外角都等于45°,则该正多边形是()A.正六边形 B.正七边形 C.正八边形 D.正九边形6.将代数式的分子,分母都扩大5倍,则代数式的值()A.扩大5倍 B.缩小5倍 C.不变 D.无法确定7.已知,,则的值为()A.11 B.18 C.38 D.128.若方程mx+ny=6的两个解是,,则m,n的值为()A.4,2 B.2,4 C.﹣4,﹣2 D.﹣2,﹣49.如果在y轴上,那么点P的坐标是A. B. C. D.10.在直线L上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别为1、2、3,正放置的四个正方形的面积依次是S1、S2、S3、S4,则S1+2S2+2S3+S4=(
)A.5 B.4 C.6 D.1011.如图,在中,,,,点到的距离是()A. B. C. D.12.如图,在中,是的平分线,,,那么()A. B. C. D.二、填空题(每题4分,共24分)13.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为______.14.如果正比例函数的图像经过点,,那么y随x的增大而______.15.如图,在△ABC中,∠B=10°,ED垂直平分BC,ED=1.则CE的长为.16.如图,已知△ABC中,AB=AC,AD是∠BAC的平分线,AE是∠BAC的外角平分线,ED∥AB交AC于点G,下列结论:①BD=DC;②AE∥BC;③AE=AG;④AG=DE.正确的是_____(填写序号)17.已知,求=___________.18.如图,在△ABC中,∠A=∠B,D是AB边上任意一点DE∥BC,DF∥AC,AC=5cm,则四边形DECF的周长是_____.三、解答题(共78分)19.(8分)如图,在□ABCD中,AC交BD于点O,点E,点F分别是OA,OC的中点。求证:四边形BEDF为平行四边形20.(8分)近年来雾霾天气给人们的生活带来很大影响,空气质量问题倍受人们关注.某单位计划在室内安装空气净化装置,需购进A、B两种设备.每台B种设备价格比每台A种设备价格多0.7万元,花3万元购买A种设备和花7.2万元购买B种设备的数量相同.(1)求A种、B种设备每台各多少万元?(2)根据单位实际情况,需购进A、B两种设备共20台,总费用不高于15万元,求A种设备至少要购买多少台?21.(8分)已知,,若,试求的值.22.(10分)学校以班为单位举行了“书法、版画、独唱、独舞”四项预选赛,参赛总人数达480人之多,下面是七年级一班此次参赛人数的两幅不完整的统计图,请结合图中信息解答下列问题:(1)求该校七年一班此次预选赛的总人数;(2)补全条形统计图,并求出书法所在扇形圆心角的度数;(3)若此次预选赛一班共有2人获奖,请估算本次比赛全学年约有多少名学生获奖?23.(10分)如图,在平面直角坐标系中,已知A(a,1),B(b,1),其中a,b满足|a+2|+(b﹣4)2=1.(1)填空:a=_____,b=_____;(2)如果在第三象限内有一点M(﹣3,m),请用含m的式子表示△ABM的面积;(3)在(2)条件下,当m=﹣3时,在y轴上有一点P,使得△ABP的面积与△ABM的面积相等,请求出点P的坐标.24.(10分)在平面直角坐标系中,点A、B分别在x轴和y轴的正半轴上,OA=OB,AB=6.(1)求AB所在直线的函数表达式;(2)如图,以OA,OB为边在第一象限作正方形OACB,点M(x,0)是x轴上的动点,连接BM.①当点M在边OA上时,作点O关于BM的对称点O′,若点O′恰好落在AB上,求△OBM的面积;②将射线MB绕点M顺时针旋转45°得到射线MN,射线MN与正方形OACB边的交点为N.若在点M的运动过程中,存在x的值,使得△MBN为等腰三角形,请直接写出x所有可能的结果.25.(12分)如图,在中,,.(1)如图1,点在边上,,,求的面积.(2)如图2,点在边上,过点作,,连结交于点,过点作,垂足为,连结.求证:.26.观察下列等式第1个等式第2个等式第3个等式第4个等式……(1)按以上规律列出第5个等式;(2)用含的代数式表示第个等式(为正整数).(3)求的值.
参考答案一、选择题(每题4分,共48分)1、D【解题分析】由点A中,,可得A点在第四象限【题目详解】解:∵3>0,3﹣π<0,∴点A(3,3﹣π)所在的象限是第四象限,【题目点拨】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2、D【分析】首先用x表示甲和乙每小时做的零件个数,再根据甲做120个所用的时间与乙做150个所用的时间相等即可列出一元一次方程.【题目详解】解:∵甲每小时做x个零件,∴乙每小时做(x+8)个零件,∵甲做120个所用的时间与乙做150个所用的时间相等,∴,故选D.【题目点拨】本题考查了分式方程的实际应用,熟练掌握是解题的关键.3、B【分析】三角形的一个外角等于和它不相邻的两个内角的和.根据三角形的外角的性质计算即可.【题目详解】解:∵∠ACD是△ABC的一个外角,
∴∠ACD=∠B+∠A,
∵∠B=70°,∴∠A=∠ACD-∠B=125°-70°=55°,
故选:B.【题目点拨】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.4、B【分析】分式有意义,则,求出x的取值范围即可.【题目详解】∵分式有意义,∴,解得:,故选B.【题目点拨】本题是对分式有意义的考查,熟练掌握分式有意义的条件是解决本题的关键.5、C【分析】多边形的外角和是360度,因为是正多边形,所以每一个外角都是45°,即可得到外角的个数,从而确定多边形的边数.【题目详解】解:360÷45=8,所以这个正多边形是正八边形.故选C.6、C【分析】分析:根据分式的分子分母都乘或除以同一个不为零的整式,分式的值不变,可得答案.【题目详解】如果把分式
中的x
、y
的值都扩大5
倍可得,则分式的值不变,故选;C.【题目点拨】本题考查了分式的基本性质,解题的关键是灵活运用分式的基本性质.7、B【分析】根据同底数幂乘法的逆运算法则,幂的乘方逆运算法则计算即可.【题目详解】,故选:B.【题目点拨】本题考查了同底数幂的乘法逆运算法则,幂的乘方逆运算法则,熟记幂的运算法则是解题的关键.8、A【分析】根据方程解的定义,将x与y的两对值代入方程得到关于m与n的方程组,解方程组即可.【题目详解】解:将,分别代入mx+ny=6中,得:,①+②得:3m=12,即m=4,将m=4代入①得:n=2,故选:A.【题目点拨】本题考查了二元一次方程解的定义和二元一次方程组的解法,根据二元一次方程解的定义得到关于m、n的方程组是解题关键.9、B【分析】根据点在y轴上,可知P的横坐标为1,即可得m的值,再确定点P的坐标即可.【题目详解】解:∵在y轴上,∴解得,∴点P的坐标是(1,-2).故选B.【题目点拨】解决本题的关键是记住y轴上点的特点:横坐标为1.10、C【分析】运用勾股定理可知,每两个相邻的正方形面积和都等于中间斜放的正方形面积,据此即可解答.【题目详解】观察发现,∵AB=BE,∠ACB=∠BDE=90°,∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°,∴∠BAC=∠EBD,∴△ABC≌△BDE(AAS),∴BC=ED,∵AB2=AC2+BC2,∴AB2=AC2+ED2=S1+S2,即S1+S2=1,同理S2+S1=2,S1+S4=1.则S1+2S2+2S1+S4=1+2+1=6,故选C.【题目点拨】本题考查了勾股定理、全等三角形的判定与性质,发现正放置的两个小正方形的面积和正好是它们之间斜放置的正方形的面积是解题的关键.11、A【分析】根据勾股定理求出AB,再根据三角形面积关系求CD.【题目详解】在中,,,,所以AB=因为AC∙BC=AB∙CD所以CD=故选A【题目点拨】考核知识点:勾股定理的运用.利用面积关系求斜边上的高是关键.12、D【分析】根据三角形的内角和得出∠ACB的度数,再根据角平分线的性质求出∠DCA的度数,再根据三角形内角与外角的关系求出∠BDC的度数.【题目详解】解:∵∠A+∠B+∠ACB=180°(三角形内角和定理),
∴∠ACB=180°-∠A-∠B=180°-80°-40°=60°,
∵CD是∠ACB的平分线,
∴∠ACD=∠ACB=30°(角平分线的性质),
∴∠BDC=∠ACD+∠A=30°+80°=110°(三角形外角的性质).
故选:D.【题目点拨】本题主要考查了三角形的内角和定理,角平分线的定义及三角形外角的知识,三角形的一个外角等于与它不相邻的两个内角的和,难度适中.二、填空题(每题4分,共24分)13、2.【题目详解】过点D作DF⊥B′E于点F,过点B′作B′G⊥AD于点G,∵∠B=60°,BE=BD=4,∴△BDE是等边三角形,∵△B′DE≌△BDE,∴B′F=B′E=BE=2,DF=2,∴GD=B′F=2,∴B′G=DF=2,∵AB=10,∴AG=10﹣6=4,∴AB′=2.考点:1轴对称;2等边三角形.14、减小【分析】求出k的值,根据k的符号确定正比例函数的增减性.【题目详解】解:∵正比例函数的图像经过点,,∴-2k=6,∴k=-3,∴y随x的增大而减小.故答案为:减小【题目点拨】本题考查了求正比例函数和正比例函数的性质,求出正比例系数k的值是解题关键.15、4【解题分析】试题分析:因为ED垂直平分BC,所以BE=CE,在Rt△BDE中,因为∠B=30°,ED=3,所以BE=4DE=4,所以CE=BE=4.考点:3.线段的垂直平分线的性质;4.直角三角形的性质.16、①②④【分析】根据等腰三角形的性质与判定、平行线的性质分别对每一项进行分析判断即可.【题目详解】解:①∵△ABC中,AB=AC,AD是∠BAC的平分线,∴BD=DC,故本选项正确,②∵△ABC中,AB=AC,AD是∠BAC的平分线,∴AD⊥BC,∴AE∥BC,故本选项正确,③∵AE∥BC,∴∠E=∠EDC,∵ED∥AB,∴∠B=∠EDC,∠AGE=∠BAC,∴∠B=∠E,∵∠B不一定等于∠BAC,∴∠E不一定等于∠AGE,∴AE不一定等于AG,故本选项错误,④∵ED∥AB,∴∠BAD=∠ADE,∵∠CAD=∠BAD,∴∠CAD=∠ADE,∴AG=DG,∵AE∥BC,∴∠EAG=∠C,∵∠B=∠E,∠B=∠C,∴∠E=∠C,∴∠EAG=∠E,∴AG=EG,∴AG=DE,故答案为:①②④【题目点拨】此题考查了等腰三角形的性质与判定,用到的知识点是等腰三角形的性质与判定、平行线的性质,关键是熟练地运用有关性质与定理进行推理判断.17、.【解题分析】已知等式整理得:,即则原式故答案为18、10cm【解题分析】求出BC,求出BF=DF,DE=AE,代入得出四边形DECF的周长等于BC+AC,代入求出即可.【题目详解】解:∵∠A=∠B,
∴BC=AC=5cm,
∵DF∥AC,
∴∠A=∠BDF,
∵∠A=∠B,
∴∠B=∠BDF,
∴DF=BF,
同理AE=DE,
∴四边形DECF的周长为:CF+DF+DE+CE=CF+BF+AE+CE=BC+AC=5cm+5cm=10cm,
故答案为10cm.【题目点拨】本题考查了平行线的性质,等腰三角形的性质和判定,关键是求出BF=DF,DE=AE.三、解答题(共78分)19、见解析;【解题分析】欲证明四边形BFDE是平行四边形只要证明OE=OF,OD=OB.【题目详解】证明:∵四边形ABCD是平行四边形∴AO=CO,BO=DO.又∵点E,点F分别是OA,OC的中点∴EO=,FO=∴EO=FO∴四边形BEDF为平行四边形【题目点拨】本题考查了平行四边形的性质和判定,解题的关键是熟练掌握平行四边形的判定和性质.20、(1)每台A种设备0.3万元,每台B种设备1.3万元;(3)1.【解题分析】试题分析:(1)设每台A种设备x万元,则每台B种设备(x+0.7)万元,根据数量=总价÷单价结合花3万元购买A种设备和花7.3万元购买B种设备的数量相同,即可得出关于x的分式方程,解之并检验后即可得出结论;(3)设购买A种设备m台,则购买B种设备(30﹣m)台,根据总价=单价×数量结合总费用不高于13万元,即可得出关于m的一元一次不等式,解之即可得出m的取值范围,取其内的最小正整数即可.试题解析:(1)设每台A种设备x万元,则每台B种设备(x+0.7)万元,根据题意得:,解得:x=0.3.经检验,x=0.3是原方程的解,∴x+0.7=1.3.答:每台A种设备0.3万元,每台B种设备1.3万元.(3)设购买A种设备m台,则购买B种设备(30﹣m)台,根据题意得:0.3m+1.3(30﹣m)≤13,解得:m≥.∵m为整数,∴m≥1.答:A种设备至少要购买1台.21、【分析】首先利用,代入进行化简,在代入参数计算.【题目详解】解:原式===【题目点拨】本题主要考查分式的化简计算.22、(1)七年一班此次预选赛的总人数是24人;(2),图见解析;(3)本次比赛全学年约有40名学生获奖【分析】(1)用七年一班版画人数除以版画的百分数即可求得七年一班的参赛人数;
(2)用七年一班总的参赛人数减去版画、独唱、独舞的参赛人数即可求得书法的参赛人数,再用七年一班书法的参赛人数除以七年一班总的参赛人数再乘以360°即可求得七年一班书法所在扇形圆心角的度数,根据求得的数据补全统计图即可;
(3)用参赛总人数除以七年一班的参赛人数,再乘以2即可求解.【题目详解】(1)(人),故该校七年一班此次预选赛的总人数是24人;(2)书法参赛人数=(人),书法所在扇形圆心角的度数=;补全条形统计图如下:(3)(名)故本次比赛全学年约有40名学生获奖.【题目点拨】本题考查了条形统计图与扇形统计图的知识,解题的关键是读懂两种统计图,从两种统计图中找到相关数据进行计算.23、(1).﹣2,4;(2).﹣3m;(3).(1,﹣3)或(1,3).【分析】(1)由绝对值和平方的非负性可求得a+2=1,b﹣4=1,即可求出a、b的值;(2)作MC⊥x轴交x轴于点C,,分别求出AB、MC的长度,由三角形面积公式表示出△ABM的面积即可;(3)求出当m=﹣3时,△ABM的面积,设P(1,a),将△ABP的面积表示出来,列方程求解即可.【题目详解】(1)由题意得:a+2=1,b﹣4=4,∴a=﹣2,b=4;(2)作MC⊥x轴交x轴于点C,∵A(﹣2,1),B(4,1),∴AB=6,∵MC=﹣m,∴S△ABM=AB·MC=×6×(﹣m)=﹣3m;(3)m=﹣3时,S△ABM=﹣3×(﹣3)=9,设P(1,a),OP=|a|,∴S△ABP=AB·OP=×6×|a|=3|a|,∴3|a|=9,解得a=±3,∴P(1,3)或(1,﹣3).【题目点拨】本题主要考查非负数的性质、点的坐标以及三角形的面积公式,点的坐标转化为点到坐标轴的距离时注意符号问题.24、(1)y=-x+6;(2)①S△BOM=;②当-6≤x≤0,x=6,x=时,△MBN为等腰三角形.【分析】(1)由题意可以求出A、B的坐标,再利用待定系数法可以得到AB所在直线的函数表达式;
(2)①由已知可以求出OM的值,从而得到△OBM的面积;
②根据已知条件将M在x轴上运动,可以得到△MBN为等腰三角形时x所有可能的结果.
【题目详解】(1)∵OA=OB,AB=6,∴A(6,0),B(0,6).设AB所在直线为y=kx+b,将点A,B坐标代入得,,解得:,∴AB所在直线的函数表达式为y=-x+6.(2)①如图,∵由轴对称性可知,BO′=BO=6,在等腰Rt△AMO′中,AO′=,∴OM=O′M=,∴S△BOM=·OB·OM=×6×()=.
②如图,当-6≤x≤0时,BM=BN;
如图,当x=6时,M与A重合,N与C重合,NB=NM;
如图,当x=时,MB=MN.
∴当-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年矿泉水品牌代理经销合同
- 2025年度企业数据分析SaaS软件服务合同3篇
- 2024年食品冷藏供应链管理合同
- 2024年海洋工程建设项目施工承包合同范本3篇
- 2025年度电力设施安全员巡检与故障处理合同3篇
- 2025年食品加工设备OEM设计与生产合同
- 2024年股东退股协议书范本
- 2024年高端商务车租赁服务合同协议3篇
- 支气管扩张患者的排痰护理
- 2025年度跨区域搬迁员工安置合同3篇
- DK77系列线切割机床使用说明书(电气部份)_图文
- 俄罗斯联邦政府第782号决议 电梯安全技术规程(2009版)
- 天津建筑消防设施维护管理规定
- CNAS-TRC-014_2018《能源管理体系(EnMS)能源绩效参数和能源基准的建立方法及认证审核》
- 钢结构厂房施工方案(完整版)
- 正能量校园心理剧剧本-校园心理剧本范例
- 旋转式滤水器控制系统设计1
- 考试焦虑及相关因素研究
- 岗位风险告知卡(40个风险点)
- 质量体系审核不符合项案例
- 钻井工程岩石力学与破岩原理
评论
0/150
提交评论