版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省茂名市茂南区2024届八上数学期末达标检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.能使分式有意义的条件是()A. B. C. D.2.下列运算中,正确的是()A.3x+4y=12xy B.x9÷x3=x3C.(x2)3=x6 D.(x﹣y)2=x2﹣y23.在△ABC中,能说明△ABC是直角三角形的是()A.∠A∶∠B∶∠C=1∶2∶2 B.∠A∶∠B∶∠C=3∶4∶5C.∠A∶∠B∶∠C=1∶2∶3 D.∠A∶∠B∶∠C=2∶3∶44.已知=,=,则的值为()A.3 B.4 C.6 D.95.下列运算错误的是()A. B. C. D.6.点P(−6,6)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.下列运算正确的是()A.x2+x2=2x4 B.a2•a3=a5 C.(﹣2x2)4=16x6 D.(x+3y)(x﹣3y)=x2﹣3y28.某市出租车计费办法如图所示.根据图象信息,下列说法错误的是()A.出租车起步价是10元B.在3千米内只收起步价C.超过3千米部分(x>3)每千米收3元D.超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2x+49.已知a∥b,某学生将一直角三角板放置如图所示,如果∠1=35°,那么∠2的度数为()A.35° B.55° C.56° D.65°10.点P(﹣2,3)关于y轴对称点的坐标在第()象限A.第一象限 B.第二象限 C.第三象限 D.第四象限二、填空题(每小题3分,共24分)11.在中,是中线,是高,若,,则的面积__________.12.因式分解:__________.13.“两直线平行,内错角相等”的逆命题是__________.14.如图,直线a和直线b被直线c所截,给出下列条件:①∠1=∠2;②∠3=∠6;③∠4+∠7=180°;④∠5+∠8=180°.其中能判断a∥b的条件是________.15.我国许多城市的“灰霾”天气严重,影响身体健康.“灰霾”天气的最主要成因是直径小于或等于微米的细颗粒物(即),已知微米米,此数据用科学记数法表示为__________米.16.若与互为相反数,则的值为________________.17.如图,点P、M、N分别在等边△ABC的各边上,且MP⊥AB于点P,MN⊥BC于点M,PV⊥AC于点N,若AB=12cm,求CM的长为______cm.18.无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有__________cm.三、解答题(共66分)19.(10分)计算(1)(2)20.(6分)某校有3名教师准备带领部分学生(不少于3人)参观植物园,经洽谈,植物园的门票价格为:教师票每张25元,学生票每张15元,且有两种购票优惠方案,方案一:购买一张教师票赠送一张学生票;方案二:按全部师生门票总价的80%付款.假如学生人数为x(人),师生门票总金额为y(元).(1)分别写出两种优惠方案中y与x的函数表达式;(2)请通过计算回答,选择哪种购票方案师生门票总费用较少.21.(6分)计算题:(1)27+13-(2)185×25÷(﹣222.(8分)计算:(﹣4)×(﹣)+2﹣1﹣(π﹣1)0+.23.(8分)如图,AD是△ABC的角平分线,点F、E分别在边AC、AB上,连接DE、DF,且∠AFD+∠B=180°.(1)求证:BD=FD;(2)当AF+FD=AE时,求证:∠AFD=2∠AED.24.(8分)有10名合作伙伴承包了一块土地准备种植蔬菜,他们每人可种茄子3亩或辣椒2亩,已知每亩茄子平均可收入0.5万元,每亩辣椒平均可收入0.8万元,要使总收入不低于15.6万元,则最多只能安排多少人种茄子?25.(10分)计算:(1)(2)26.(10分)(1)计算:;(2)化简求值:,其中,.
参考答案一、选择题(每小题3分,共30分)1、B【解题分析】先根据分式有意义的条件列出关于的不等式,再求出的取值范围即可.【题目详解】解:∵分式有意义∴∴.故选:B.【题目点拨】本题考查分式有意义的条件,熟知分式有意义的条件是分母不等于零是解题关键.2、C【分析】直接应用整式的运算法则进行计算得到结果【题目详解】解:A、原式不能合并,错误;B、原式=,错误;C、原式=,正确;D、原式=,错误,故选:C.【题目点拨】整式的乘除运算是进行整式的运算的基础,需要完全掌握.3、C【分析】根据三角形的内角和公式分别求得各角的度数,从而判断其形状.【题目详解】、设三个角分别为、、,根据三角形内角和定理得三个角分别为:、、,不是直角三角形;、设三个角分别为、、,根据三角形内角和定理得三个角分别为:、、,不是直角三角形;、设三个角分别为、、,根据三角形内角和定理得三个角分别为:、、,是直角三角形;、设三个角分别为、、,根据三角形内角和定理得三个角分别为:、、,不是直角三角形;故选.【题目点拨】此题主要考查了三角形的内角和定理,要熟练掌握,解答此题的关键是要明确:三角形的内角和是.4、D【分析】逆用同底数幂的除法法则以及幂的乘方法则进行计算,即可解答.【题目详解】∵=,=,
∴=(3a)2÷3b=36÷4=9,
故选D.【题目点拨】本题考查同底数幂的除法法则以及幂的乘方法则,解题的关键是掌握相关法则的逆用.5、C【分析】根据负整数指数幂,逐个计算,即可解答.【题目详解】A.,正确,故本选项不符合题意;B.,正确,故本选项不符合题意;C.,错误,故本选项符合题意;D.,正确,故本选项不符合题意;故选:C.【题目点拨】本题主要考查了负整数指数幂的运算.负整数指数为正整数指数的倒数.6、B【解题分析】根据各象限内点的坐标特征解答即可.【题目详解】点P(-6,6)所在的象限是第二象限.
故选B.【题目点拨】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).7、B【解题分析】试题分析:A、根据合并同类项计算,原式=2;B、同底数幂的乘法,底数不变,指数相加,则计算正确;C、幂的乘方法则,底数不变,指数相乘,原式=16;D、根据平方差公式进行计算,原式==.考点:(1)同底数幂的计算;(2)平方差公式8、A【分析】根据图象信息一一判断即可解决问题.【题目详解】解:由图象可知,出租车的起步价是10元,在3千米内只收起步价,设超过3千米的函数解析式为y=kx+b,则,解得,∴超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2x+4,超过3千米部分(x>3)每千米收2元,故A、B、D正确,C错误,故选C.【题目点拨】此题主要考查了一次函数的应用、学会待定系数法确定函数解析式,正确由图象得出正确信息是解题的关键,属于中考常考题.9、B【分析】利用两直线平行同位角相等得到一对角相等,再由对顶角相等及直角三角形两锐角互余求出所求角度数即可.【题目详解】解:∵a∥b∴∠3=∠4∵∠3=∠1∴∠1=∠4∵∠5+∠4=90°且∠5=∠2∴∠1+∠2=90°∵∠1=35°∴∠2=55°故选B.【题目点拨】此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.10、A【解题分析】∵点P(-2,3)在第二象限,∴点P关于轴的对称点在第一象限.故选A.二、填空题(每小题3分,共24分)11、2【分析】根据中线的定义求出DC的长,再根据三角形的面积公式即可得出结论.【题目详解】∵AD是中线,∴BD=DC=BC=1.△ADC的面积=DC•AH=×1×6=2.故答案为:2.【题目点拨】本题查考了三角形的中线和三角形的面积公式.掌握三角形中点的性质是解答本题的关键.12、【分析】因为-6=-3×2,-3+2=-1,所以可以利用十字相乘法分解因式即可得解.【题目详解】利用十字相乘法进行因式分解:.【题目点拨】本题考查了分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法与十字相乘法与分组分解法分解.13、内错角相等,两直线平行【解题分析】解:“两直线平行,内错角相等”的条件是:两条平行线被第三条值线索截,结论是:内错角相等.将条件和结论互换得逆命题为:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行,可简说成“内错角相等,两直线平行”.14、①②③④;【题目详解】解:①∠1=∠2即同位角相等,能判断a∥b(同位角相等,两直线平行);②∠3=∠6为内错角相等,能判断a∥b;③易知∠4=∠6,已知∠4+∠7=180°即∠6+∠7=180°能判断a∥b(同旁内角互补,两直线平行);④易知∠5和∠3为对顶角,∠8和∠2为对顶角,故∠5+∠8=180°即∠3+∠2=180°能判断a∥b(同旁内角互补,两直线平行);综上可得①②③④可判断a∥b.【题目点拨】本题难度较低,主要考查学生对平行线判定定理知识点的掌握.15、【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】,故答案为.【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16、4【分析】根据与互为相反数可以得到+=0,再根据分式存在有意义的条件可以得到1-x≠0,x≠0,计算解答即可.【题目详解】∵与互为相反数∴+=0又∵1-x≠0,x≠0∴原式去分母得3x+4(1-x)=0解得x=4故答案为4【题目点拨】本题考查的是相反数的意义、分式存在有意义的条件和解分式方程,根据相反数的意义得到+=0是解题的关键.17、4【分析】根据等边三角形的性质得出∠A=∠B=∠C,进而得出∠MPB=∠NMC=∠PNA=90°,根据平角的义即可得出∠NPM=∠PMN=∠MNP,即可证△PMN是等边三角形:根据全等三角形的性质得到PA=BM=CN,PB=MC=AN,从而求得MC+NC=AC=12cm,再根据直角三角形30°角所对的直角边等于斜边的一半得出2MC=NC,即司得MC的长.【题目详解】∵△ABC是等边三角形,∴∠A=∠B=∠C.∵MP⊥AB,MN⊥BC,PN⊥AC,∴∠MPB=∠NMC=∠PNA=90°,∴∠PMB=∠MNC=∠APN,∠NPM=∠PMN=∠MNP,∴△PMN是等边三角形∴PN=PM=MN,∴△PBM≌△MCN≌△NAP(AAS),∴PA=BM=CN,PB=MC=AN,MC+NC=AC=12cm,∵∠C=60°,∴∠MNC=30°,∴NC=2CM,∴MC+NC=3CM=12cm,∴CM=4cm.故答案为:4cm【题目点拨】本题考查了等边三角形的判定和性质,平角的意义,三角形全等的性质等,得出∠NPM=∠PMN=∠MNP是本题的关键.18、1【解题分析】根据题意直接利用勾股定理得出杯子内的筷子长度,进而得出答案.【题目详解】解:由题意可得:杯子内的筷子长度为:=11,则木筷露在杯子外面的部分至少有:20−11=1(cm).故答案为1.【题目点拨】此题主要考查了勾股定理的应用,正确得出杯子内筷子的长是解决问题的关键.三、解答题(共66分)19、(1)-3;(2)6.【解题分析】把原式化为最简二次根式,合并即可得到结果.【题目详解】(1)原式=2-+-3=-3(2)原式=-4=10-4=6故答案为:(1);(2)。【题目点拨】本题考查了实数的运算,熟练掌握运算法则是解题的关键.20、(1)y1=15x+30(x≥3),y2=12x+60(x≥3);(2)当购买10张票时,两种优惠方案付款一样多;3≤x<10时,y1<y2,选方案一较划算;当x>10时,y1>y2,选方案二较划算.【分析】(1)首先根据优惠方案①:付款总金额=购买成人票金额+除去3人后的学生票金额;优惠方案②:付款总金额=(购买成人票金额+购买学生票金额)×打折率,列出y关于x的函数关系式,(2)根据(1)的函数关系式求出当两种方案付款总金额相等时,购买的票数.再就三种情况讨论.【题目详解】解:(1)按优惠方案一可得y1=25×3+(x-3)×15=15x+30(x≥3),按优惠方案二可得y2=(15x+25×3)×80%=12x+60(x≥3);(2)∵y1-y2=3x-30(x≥3),①当y1-y2=0时,得3x-30=0,解得x=10,∴当购买10张票时,两种优惠方案付款一样多;②当y1-y2<0时,得3x-30<0,解得x<10,∴3≤x<10时,y1<y2,选方案一较划算;③当y1-y2>0时,得3x-30>0,解得x>10,当x>10时,y1>y2,选方案二较划算.【题目点拨】本题根据实际问题考查了一次函数的运用.解决本题的关键是根据题意正确列出两种方案的解析式,进而计算出临界点x的取值,再进一步讨论.21、(1)433【解题分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)根据二次根式的混合运算顺序和运算法则计算可得.【题目详解】解:(1)原式=13+33﹣23=4(2)原式=185×20÷(﹣2=72÷(﹣8)=﹣72÷8=﹣9=﹣1.故答案为:(1)433【题目点拨】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.22、【解题分析】分析:按照实数的运算顺序进行运算即可.详解:原式点睛:本题考查实数的运算,主要考查零次幂,负整数指数幂,特殊角的三角函数值以及二次根式,熟练掌握各个知识点是解题的关键.23、(1)证明见解析;(2)证明见解析.【分析】(1)过点D作DM⊥AB于M,DN⊥AC于N,由角平分线的性质得DM=DN,角角边证明△DMB≌△DNF,由全等三角形的性质求得BD=FD;(2)在AB上截取AG=AF,连接DG.由边角边证△ADF≌△ADG,根据全等三角形的性质得FD=GD,∠AFD=∠AGD,因AF+FD=AE,AE=AG+GE得FD=GD=GE,由等腰三角形等边对等角和三角形的外角定理得∠AGD=2∠GED,等量代换得∠AFD=2∠AED.【题目详解】证明:(1)过点D作DM⊥AB于M,DN⊥AC于N,如图1所示:∵DM⊥AB,DN⊥AC,∴∠DMB=∠DNF=90°,又∵AD平分∠BAC,∴DM=DN,又∵∠AFD+∠B=180°,∠AFD+∠DFN=180°,∴∠B=∠DFN,在△DMB和△DNF中,∴△DMB≌△DNF(AAS)∴BD=FD;(2)在AB上截取AG=AF,连接DG.如图2所示,∵AD平分∠BAC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 牙龈鳞状细胞癌病因介绍
- 烦渴多饮病因介绍
- 多媒体课件的制作过程
- 泌尿生殖系损伤病因介绍
- 2024年中考英语单项选择百题分类训练单项选择名校模拟真题100题综合练02(解析版)
- 开题报告:中国教育公平实践的理论建构研究
- 开题报告:应用型本科高校校企协同育人体系的构建与实践研究
- 开题报告:新时代师范院校面向人人的进阶式美育课程体系创新构建
- 2024届南省洛阳市高三第一次高考模拟考试数学试题文试题
- 2024年太阳能发电项目合作合同
- 小学生学业成绩等级制度-小学学业等级
- 过程审核VDA6.3检查表
- 常压矩形容器设计计算软件
- 交流变换为直流的稳定电源设计方案
- PR6C系列数控液压板料折弯机 使用说明书
- 装配工艺通用要求
- 钢结构工程环境保护和文明施工措施
- 物业管理业主意见征询表
- 8D培训课件 (ppt 43页)
- 劳动力计划表
- 《教育改革发展纲要》义务教育阶段解读
评论
0/150
提交评论