




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省宁波鄞州区五校联考2024届数学八上期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.若在实数范围内有意义,则x满足的条件是()A.x≥ B.x≤ C.x= D.x≠2.一个三角形的两边长分别为3cm和7cm,则此三角形的第三边的长可能是()A.3cm B.4cm C.7cm D.11cm3.某市城市轨道交通号线工程的中标价格是元,精确到,用科学记数法可表示为()A. B. C. D.4.
的倒数是(
)A. B. C. D.5.如图,把矩形沿折叠,使点落在点处,点落在点处,若,且,则线段的长为()A.1 B.2 C.3 D.46.下列函数中,随增大而减小的是()A. B. C. D.7.,则下列不等式成立的是()A. B. C. D.8.当x时,分式的值为0()A.x≠- B.x=- C.x≠2 D.x=29.如图,在中,是的平分线,且,若,则的大小为()A. B. C. D.10.已知=,=,则的值为()A.3 B.4 C.6 D.911.在一篇文章中,“的”、“地”、“和”三个字共出现50次,已知“的”和“地”出现的频率之和是0.7,那么“和”字出现的频数是()A.14B.15C.16D.1712.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是().A.众数是6吨 B.平均数是5吨 C.中位数是5吨 D.方差是二、填空题(每题4分,共24分)13.如图,∠AOB=30º,点M、N分别是射线OB、OA上的动点,点P为∠AOB内一点,且OP=8,则△PMN的周长的最小值=___________.14.如图,在菱形ABCD中,∠BAD=45°,DE是AB边上的高,BE=2,则AB的长是____.15.如图,在△ABC中,∠A=36°,AB=AC,BD是∠ABC的角分线.若在边AB上截取BE=BC,连接DE,则图中共有_________个等腰三角形.16.在坐标系中,已知点关于轴,轴的对称点分别为,,若坐标轴上的点恰使,均为等腰三角形,则满足条件的点有______个.17.对点的一次操作变换记为,定义其变换法则如下:;且规定(为大于1的整数).如:,,则__________.18.如图,在,,点是上一点,、分别是线段、的垂直平分线,则________.三、解答题(共78分)19.(8分)快递公司为提高快递分拣的速度,决定购买机器人来代替人工分拣.已知购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元.(1)求甲、乙两种型号的机器人每台的价格各是多少万元;(2)已知甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,该公司计划最多用41万元购买8台这两种型号的机器人,则该公司该如何购买,才能使得每小时的分拣量最大?20.(8分)如图,∠ACB=90∘,∠A=35∘,∠BCD=21.(8分)如图,工厂和工厂,位于两条公路之间的地带,现要建一座货物中转站,若要求中转站到两条公路的距离相等,且到工厂和工厂的距离也相等,请用尺规作出点的位置.(不要求写做法,只保留作图痕迹)22.(10分)解分式方程:(1)(2)23.(10分)如图,∠ABC=60°,∠1=∠1.(1)求∠3的度数;(1)若AD⊥BC,AF=6,求DF的长.24.(10分)已知,为直线上一点,为直线外一点,连结.(1)用直尺、圆规在直线上作点,使为等腰三角形(作出所有符合条件的点,保留痕迹).(2)设,若(1)中符合条件的点只有两点,直接写出的值.25.(12分)如图所示,△ADF和△BCE中,∠A=∠B,点D,E,F,C在同一直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥AF.请用其中两个关系式作为条件,另一个作为结论,写出的一个正确结论,并说明它正确的理由.26.计算(1)26(2)(2)2﹣(2)(2)
参考答案一、选择题(每题4分,共48分)1、C【解题分析】由题意可知:,解得:x=,故选C.【题目点拨】本题考查二次根式有意义的条件,解题的关键是正确理解二次根式有意义的条件,本题属于基础题型.2、C【解题分析】试题解析:设第三边长为xcm,根据三角形的三边关系可得:7-3<x<7+3,解得:4<x<10,故答案为C.考点:三角形三边关系.3、C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】把精确到为=.故选:C.【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4、C【解题分析】根据倒数定义可知,的倒数是.【题目详解】解:-×-=1故答案为:C.【题目点拨】此题考查倒数的定义,解题关键在于熟练掌握其定义.5、B【分析】由平行线的性质和对折的性质证明△AEF是等边三角形,在直角三角形ABF中,求得∠BAF=,从而求得AF=1BF=1,进而得到EF=1.【题目详解】∵矩形ABCD沿EF折叠,使点C落在点A处,点D落在点G处,∴∠B=90,∠EFC=∠AFE,ADBC,又∵∠AFE=60,∴∠AEF=∠AFE=60,∴△AEF是等边三角形,∴∠EAF=60,EF=AF,又∵ADBC,∴∠AFB=60,又∵∠B=90,BF=1,∴AF=1BF=1,又∵EF=AF,∴EF=1.故选:B.【题目点拨】考查了图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.6、D【分析】根据一次函数的性质逐一判断即可得出答案.【题目详解】A.,,随增大而增大,不符合题意;B.,,随增大而增大,不符合题意;C.,,随增大而增大,不符合题意;D.,,随增大而减小,符合题意;故选:D.【题目点拨】本题主要考查一次函数的性质,掌握一次函数的图象和性质是解题的关键.7、D【分析】根据不等式的性质,对每个选项进行判断,即可得到答案.【题目详解】解:∵,∴,故A错误;∴不一定成立,故B错误;∴,故C错误;∴,故D正确;故选择:D.【题目点拨】本题考查了不等式的性质,解题的关键是熟练掌握不等式的性质.8、D【分析】分式的值为的条件是:(1)分子等于零;(2)分母不等于零.两个条件需同时具备,缺一不可.据此可以解答本题.【题目详解】解:∵分式的值为∴∴.故选:D【题目点拨】本题考查的是对分式的值为0的条件的理解,该类型的题易忽略分母不为这个条件.9、B【分析】在AB上截取AC′=AC,连接DC′,由题知AB=AC+CD,得到DC=C′B,可证得△ADC≌△ADC′,即可得到△BDC′是等腰三角形,设∠B=x,利用三角形的内角和公式即可求解.【题目详解】解:在AB上截取AC′=AC,连接DC′如图所示:∵AB=AC+CD∴BC′=DC∵AD是∠BAC的角平分线∴∠C′AD=∠DAC在△ACD和△AC′D中∴△ACD≌△AC′D∴C′D=DC,∠ACD=∠AC′D∴DC′=BC′∴△BC′D是等腰三角形∴∠C′BD=∠C′DB设∠C′BD=∠C′DB=x,则∠ACD=∠AC′D=2x∵∠BAC=81°∴x+2x+81°=180°解得:x=33°∴∠ACB=33°×2=66°故选:B.【题目点拨】本题主要考查的是全等三角形的判定以及角平分线的性质,掌握全等三角形的判定和角平分线的性质是解题的关键.10、D【分析】逆用同底数幂的除法法则以及幂的乘方法则进行计算,即可解答.【题目详解】∵=,=,
∴=(3a)2÷3b=36÷4=9,
故选D.【题目点拨】本题考查同底数幂的除法法则以及幂的乘方法则,解题的关键是掌握相关法则的逆用.11、B【解题分析】根据“的”和“地”的频率之和是0.7,得出“和”字出现的频率是0.3,再根据频数=频率×数据总数,即可得出答案.【题目详解】解:由题可得,“和”字出现的频率是1﹣0.7=0.3,∴“和”字出现的频数是50×0.3=15;故选:B.【题目点拨】此题考查了频数和频率之间的关系,掌握频率的定义:每个对象出现的次数与总次数的比值(或者百分比)即频数=频率×数据总数是本题的关键.12、C【解题分析】试题分析:根据众数、平均数、中位数、方差:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…xn的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2].数据:3,4,5,6,6,6,中位数是5.5,故选C考点:1、方差;2、平均数;3、中位数;4、众数二、填空题(每题4分,共24分)13、1【题目详解】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点M、N,连接OP、OC、OD、PM、PN.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PM=CM,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PN=DN,OP=OD,∠DOB=∠POB,∴OC=OD=OP=1cm,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=1.∴△PMN的周长的最小值=PM+MN+PN=CM+MN+DN≥CD=1.故答案为1.14、.【分析】设AB=x,根据勾股定理列方程为:AD2=AE2+DE2,则x2=(x−2)2+(x−2)2,解方程可解答.【题目详解】解:设AB=x.∵四边形ABCD是菱形,∴AD=AB=x.∵DE是AB边上的高,∴∠AED=90°.∵∠BAD=45°,∴∠BAD=∠ADE=45°,∴AE=ED=x﹣2,由勾股定理得:AD=AE2+DE2,∴x2=(x﹣2)2+(x﹣2)2,解得:x1=4+2,x2=4﹣2,∵BE=2,∴AB>2,∴AB=x=4+2.故答案为:4+2.【题目点拨】本题考查了菱形的性质,等腰直角三角形的性质和勾股定理,熟练掌握菱形的性质是解题的关键.15、1.【解题分析】根据已知条件分别求出图中三角形的内角度数,再根据等腰三角形的判定即可找出图中的等腰三角形.【题目详解】∵AB=AC,∴△ABC是等腰三角形;∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,∵BD是△ABC的角平分线,∴∠ABD=∠DBC=∠ABC=36°,∴∠A=∠ABD=36°,∴BD=AD,∴△ABD是等腰三角形;在△BCD中,∵∠BDC=180°−∠DBC−∠C=180°−36°−72°=72°,∴∠C=∠BDC=72°,∴BD=BC,∴△BCD是等腰三角形;∵BE=BC,∴BD=BE,∴△BDE是等腰三角形;∴∠BED=(180°−36°)÷2=72°,∴∠ADE=∠BED−∠A=72°−36°=36°,∴∠A=∠ADE,∴DE=AE,∴△ADE是等腰三角形;∴图中的等腰三角形有1个.故答案为1.考点:等腰三角形的判定16、5【分析】如图所示,利用两圆一线的方法,判断点M的个数即可.【题目详解】解:如图,分别以A,Q为圆心,以AQ长度为半径画出两个较大的圆,此时x轴上的点满足与A,Q组成等腰三角形有5个,y轴上的点均可满足与A,Q组成等腰三角形,然后分别以A,P为圆心以AP的产生古为半径画出两个较小的圆,此时坐标轴上只有x轴上的点满足与A,P组成等腰三角形,因此点恰使,均为等腰三角形共有5个.【题目点拨】此题主要考查等腰三角形的性质和坐标与图形的性质,解答此题的关键是利用等腰三角形性质判断相关的点.17、【分析】根据所给的已知条件,找出题目中的变化规律,得出当n为奇数时的坐标,即可求出.【题目详解】解:根据题意可得:……当n为偶数时,,当n为奇数时,故,即故答案为.【题目点拨】本题考查了点的坐标,解题的关键是找出数字的变化规律,得出当n为奇数时的点的坐标,并根据规律解题.18、【分析】根据、分别是线段、的垂直平分线,得到BE=DE,DF=CF,由等腰三角形的性质得到∠EDB=∠B,∠FDC=∠C,根据三角形的内角和得到∠B+∠C=180−∠A,根据平角的定义即可得到结论.【题目详解】∵、分别是线段、的垂直平分线,∴BE=DE,DF=CF,∴∠EDB=∠B,∠FDC=∠C,∵,∴∠EDB+∠FDC=180−,∴∠B+∠C=100,∴∠A=180-100=80,故答案为:80.【题目点拨】本题考查了线段的垂直平分线的性质,等腰三角形的性质,三角形的内角和,熟练掌握线段的垂直平分线的性质是解题的关键.三、解答题(共78分)19、(1)甲、乙两种型号的机器人每台价格分别是6万元、4万元;(2)该公司购买甲型和乙型机器人分别是4台和4台才能使得每小时的分拣量最大.【解题分析】(1)设甲型机器人每台价格是x万元,乙型机器人每台价格是y万元,根据购买甲型机器人1台,乙型机器人2台,共需14万元;购买甲型机器人2台,乙型机器人3台,共需24万元,列方程组,解方程组即可;(2)首先设该公可购买甲型机器人a台,乙型机器人(8-a)台,根据总费用不超过41万元,求出a的范围,再求出最大分拣量的分配即可.【题目详解】(1)设甲型机器人每台价格是x万元,乙型机器人每台价格是y万元,根据题意得解这个方程组得:答:甲、乙两种型号的机器人每台价格分别是6万元、4万元;(2)设该公可购买甲型机器人a台,乙型机器人(8-a)台,根据题意得6a+4(8-a)≤41解这个不等式得0<a≤,∵a为正整数,∴a的取值为1,2,3,4,∵甲型和乙型机器人每台每小时分拣快递分别是1200件和1000件,∴该公司购买甲型和乙型机器人分别是4台和4台才能使得每小时的分拣量最大.【题目点拨】本题考查的是二元一次方程组和一元一次不等式的实际应用,熟练掌握这两点是解题的关键.20、见解析.【解题分析】想办法证明∠BCD=∠B即可解决问题.【题目详解】证明:∵∠ACB=∴∠A+∠B=∵∠A=∴∠B=∵∠BCD=∴∠B=∠BCD∴CD∥AB.【题目点拨】本题考查平行线的判定,方向角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21、见解析【分析】结合角平分线的性质及作法以及线段垂直平分线的性质及作法进一步分析画图即可.【题目详解】如图所示,点P即为所求:【题目点拨】本题主要考查了尺规作图的实际应用,熟练掌握相关方法是解题关键.22、(1)x=1(2)无解【分析】根据分式方程的解题步骤去分母、去括号、移项合并同类项,则方程可解,再检验增根问题可解.【题目详解】解:(1)去分母,得∴x=1经检验,x=1为原方程的解∴原方程的解为x=1(2)解:去分母,得解得x=2经检验,x=2是原分式方程的增根.∴原方程无解【题目点拨】本题考查了分式方程的解法,解答关键是注意检验分式方程的解是否为增根.23、(1)60°;(1)3【分析】(1)由三角形的外角性质,得到∠3=∠1+∠ABF,由∠1=∠1,得到∠3=∠ABC,即可得到答案;(1)由(1)∠3=∠ABC=60°,由AD⊥BC,则∠1=∠1=30°,则∠ABF=30°=∠1,则BF=AF=6,即可求出DF的长度.【题目详解】解:(1)根据题意,由三角形的外角性质,得∠3=∠1+∠ABF,∵∠1=∠1,∴∠3=∠1+∠ABF,∵∠ABC=∠ABF+∠1=60°,∴∠3=60°;(1)由(1)可知,∠3=60°,∵AD⊥BC,∴∠ADB=90°,∴∠1=30°,∴,∵∠3=∠1+∠ABF,∴∠ABF=30°,∵∠1=∠1=30°,∴∠ABF=∠1=30°,∴BF=AF=6,∴.【题目点拨】本题考查了30°直角三角形的性质,三角形的外角性质,以及等角对等边,解题的关键是熟练掌握所学的性质进行求解.24、(1)图见解析;(2)n的值为1.【分析】(1)分和AB与MN不垂直两种情况,①当时,以点A为圆心,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 民事调解协议员协议书
- 老师工作协议书
- 自行保存协议书
- 股东套餐协议书
- 美式和平协议书
- 自愿捐卵协议书
- 管辖范围协议书
- 绿化清理协议书
- 股票抵债协议书
- 美国隐私协议书
- 绿化迁移施工方案
- 航空与航天学习通超星期末考试答案章节答案2024年
- 工行个人房屋贷款协议模板
- 担任学生干部证明
- 《国家电网有限公司电力建设安全工作规程第4部分:分布式光伏》知识培训
- 2024年《13464电脑动画》自考复习题库(含答案)
- 【核心素养目标】9.3 一元一次不等式组 教案七年级数学下册(人教版)
- 保证断绝关系的保证书
- 选拔卷-:2024年小升初数学模拟卷三(北师大版)A3版
- 快递云仓合同范本
- 2024年高考语文作文第一轮复习:掌握常用的写作结构
评论
0/150
提交评论