新教材2023-2024学年高中数学第3章排列组合与二项式定理3.1排列与组合3.1.1基本计数原理分层作业新人教B版选择性必修第二册_第1页
新教材2023-2024学年高中数学第3章排列组合与二项式定理3.1排列与组合3.1.1基本计数原理分层作业新人教B版选择性必修第二册_第2页
新教材2023-2024学年高中数学第3章排列组合与二项式定理3.1排列与组合3.1.1基本计数原理分层作业新人教B版选择性必修第二册_第3页
新教材2023-2024学年高中数学第3章排列组合与二项式定理3.1排列与组合3.1.1基本计数原理分层作业新人教B版选择性必修第二册_第4页
新教材2023-2024学年高中数学第3章排列组合与二项式定理3.1排列与组合3.1.1基本计数原理分层作业新人教B版选择性必修第二册_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第三章3.1排列与组合3.1.1基本计数原理A级必备知识基础练1.[探究点二]某校教学大楼共有五层,每层均有两个楼梯,一学生由一层到五层的走法有()A.10种 B.25种 C.52种 D.24种2.[探究点三]中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种.现有十二生肖的吉祥物各一个,三位同学依次选一个作为礼物,甲同学喜欢牛和马,乙同学喜欢牛、狗和羊,丙同学哪个吉祥物都喜欢,如果让三位同学选取礼物都满意,则选法有()A.30种 B.50种 C.60种 D.90种3.[探究点一]如果x,y∈N*,且1≤x≤3,x+y<7,则满足条件的有序数对(x,y)的个数是()A.15 B.12 C.5 D.44.[探究点三]如果一个三位正整数如“a1a2a3”满足a1<a2,且a3<a2,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为()A.240 B.204 C.729 D.9205.[探究点三·2023广东雷州高二阶段练习](多选题)已知数字0,1,2,3,4,由它们组成四位数,下列说法正确的有()A.组成可以有重复数字的四位数有500个B.组成无重复数字的四位数有96个C.组成无重复数字的四位偶数有66个D.组成无重复数字的四位奇数有28个6.[探究点三]有10本不同的数学书,9本不同的语文书,8本不同的英语书,从中分两次选两本不同类的书,共有种不同的取法.

7.[探究点二·人教A版教材习题](1)4名同学分别报名参加学校的足球队、篮球队、乒乓球队,每人限报其中的一个运动队,不同报法的种数是34还是43?(2)3个班分别从5个景点中选择一处游览,不同选法的种数是35还是53?8.[探究点三·2023江苏连云港高二检测]用0,1,2,3,4,5,6,7,8,9这十个数字可组成多少个不同的(1)三位数?(2)无重复数字的三位数?(3)小于500且没有重复数字的自然数?B级关键能力提升练9.某校高一年级共16个班,高二年级共15个班,从中选出一个班级担任学校星期一早晨升旗任务,共有的安排方法种数是()A.16 B.15 C.31 D.24010.某学校有东、南、西、北四个校门,学校对进入四个校门做出如下规定:学生只能从东门或西门进入校园,教师只能从南门或北门进入校园.现有2名教师和3名学生要进入校园(不分先后顺序),请问进入校园的方式共有()A.6种 B.12种 C.24种 D.32种11.高二年级的三个班去甲、乙、丙、丁四个工厂参观学习,去哪个工厂可以自由选择,但甲工厂必须有班级要去,则不同的参观方案的种数为()A.16 B.18 C.37 D.4812.(多选题)现有不同的红球4个,黄球5个,绿球6个,则下列说法正确的是()A.从中选出2个球,正好一红一黄,有9种不同的选法B.若每种颜色选出1个球,有120种不同的选法C.若要选出不同颜色的2个球,有31种不同的选法D.若要不放回地依次选出2个球,有210种不同的选法13.某外语组有9人,每人至少会英语和日语中的一门,其中7人会英语,3人会日语,从中选出会英语和日语的各一人,有种不同的选法.

14.甲、乙、丙、丁四位同学决定乘坐地铁去观洲、人民公园、新城大市场三个地方游览,每人只能去一个地方,人民公园一定要有人去,则不同游览方案的种数为.

15.将摆放在编号为1,2,3,4,5五个位置上的5件不同商品重新摆放,则恰有一件商品的位置不变的摆放方法数为.(用数字作答)

16.[人教A版教材习题]口袋中装有8个白球和10个红球,每个球编有不同的号码,现从中取出2个球.(1)恰好是白球、红球各一个的取法有多少种?(2)恰好是两个白球的取法有多少种?(3)至少有一个白球的取法有多少种?(4)两球的颜色相同的取法有多少种?C级学科素养创新练17.用红、黄、蓝三种颜色涂四边形ABCD的四个顶点,要求相邻顶点的颜色不同,求不同的涂色方法的种数.18.某学校高二年级有12名语文教师、13名数学教师、15名英语教师,市教育局拟召开一个新课程研讨会.(1)若选派1名教师参会,有多少种派法?(2)若三个学科各派1名教师参会,有多少种派法?(3)若选派2名不同学科的教师参会,有多少种派法?

参考答案3.1排列与组合3.1.1基本计数原理1.D共分4步:一层到二层2种走法,二层到三层2种走法,三层到四层2种走法,四层到五层2种走法,根据分步乘法计数原理,一共有24种.选故D.2.B①若甲同学选择牛,则乙同学有2种选法,丙同学有10种选法,共有1×2×10=20种满意的选法,②若甲同学选择马,则乙同学有3种选法,丙同学有10种选法,共有1×3×10=30种满意的选法,所以总共有20+30=50种令三位同学满意的选法.故选B.3.B当x=1时,y=1,2,3,4,5;当x=2时,y=1,2,3,4;当x=3时,y=1,2,3.由分类加法计数原理得,有序数对有5+4+3=12(个).4.A分8类.当中间数为2时,有1×2=2个;当中间数为3时,有2×3=6个;当中间数为4时,有3×4=12个;当中间数为5时,有4×5=20个;当中间数为6时,有5×6=30个;当中间数为7时,有6×7=42个;当中间数为8时,有7×8=56个;当中间数为9时,有8×9=72个.故共有2+6+12+20+30+42+56+72=240个.5.AB对A:四位数的首位不能为0,有4种情况,其他数位有5种情况,则组成可以有重复数字的四位数有4×5×5×5=500个,故选项A正确;对B:四位数的首位不能为0,有4种情况,在剩下的4个数字中任选3个,排在后面3个数位,有4×3×2=24种情况,则组成无重复数字的四位数有4×24=96个,故选项B正确;对C:若0在个位,有4×3×2=24个四位偶数,若0不在个位,有3×3×2×2=36个四位偶数,则组成无重复数字的四位偶数共有24+36=60个四位偶数,故选项C错误;对D:组成无重复数字的四位奇数有3×3×2×2=36个,故选项D错误.故选AB.6.242任取两本不同类的书分为三类:①取数学、语文各一本;②取语文、英语各一本;③取数学、英语各一本.在每一类中利用分步乘法计数原理,再利用分类加法计数原理即可.共有10×9+9×8+10×8=242种不同取法.7.解(1)一件事情是“4名同学分别参加3个运动队中的一个,每人限报其中的一个运动队”,应该是人选运动队,完成“这件事”是指给4名同学逐一选择运动队,分四步完成.根据分步乘法计数原理,不同报法种数是3×3×3×3=34.(2)一件事情是“3个班分别从5个景点中选择一处游览”,应该是班选景点,完成这件事需分三步,根据分步乘法计数原理,不同的选法种数是53.8.解(1)由于0不能在百位,故百位上数字有9种选法,十位与个位上的数字均有10种选法,所以不同的三位数共有9×10×10=900个.(2)百位上的数字有9种选法,十位上的数字有除百位上的数字以外的9种选法,个位上的数字应从剩余8个数字中选取,所以共有9×9×8=648个无重复数字的三位数.(3)满足条件的一位自然数有10个,两位自然数有9×9=81个,三位自然数有4×9×8=288个,由分类加法计数原理知共有10+81+288=379个小于500且无重复数字的自然数.9.C根据分类加法计数原理计算,N=16+15=31.故选C.10.D因为学生只能从东门或西门进入校园,所以3名学生进入校园的方式共23=8种.因为教师只可以从南门或北门进入校园,所以2名教师进入校园的方式共有22=4种.所以2名教师和3名学生要进入校园的方式共有8×4=32种情况.故选D.11.C根据题意,若不考虑限制条件,每个班级都有4种选择,共有4×4×4=64种情况.其中工厂甲没有班级去,即每个班都选择了其他三个工厂,此时每个班级都有3种选择,共有3×3×3=27种方案.则符合条件的参观方案有64-27=37种.故选C.12.BD对A,从中选出2个球,正好一红一黄,有4×5=20种不同的选法,所以该选项错误;对B,若每种颜色选出1个球,有4×5×6=120种不同的选法,所以该选项正确;对C,若要选出不同颜色的2个球,有4×5+5×6+4×6=74种不同的选法,所以该选项错误;对D,若要不放回地依次选出2个球,有15×14=210种不同的选法,所以该选项正确.故选BD.13.20共分三类:第一类,当选出的会英语的人既会英语又会日语时,选会日语的人有2种选法;第二类,当选出的会日语的人既会英语又会日语时,选会英语的人有6种选法;第三类,当既会英语又会日语的人不参与选择时,则需从只会日语和只会英语的人中各选一人,有2×6=12种选法.故共有2+6+12=20种选法.14.65由题可知没有限制时,每人有3种选择,则4人共有34种,若没人去人民公园,则每人有2种选择,则4人共有24种,故人民公园一定要有人去的不同游览方案有34-24=81-16=65种.15.45根据题意,分2步进行分析:(1)将5件不同商品中选出1件,放回原来的位置,有5种情况,假设编号为5的位置不变;(2)剩下4件都不在原来位置,即编号为1,2,3,4的4件商品都不在原来位置,编号为1的商品有3种放法,假设其放在了2号商品原来的位置,则2号商品有3种放法,剩下编号为3,4的两件商品只有1种放法,则其余4件商品的放法有3×3=9种.故恰有一件商品的位置不变的摆放方法有5×9=45种.16.解(1)一件事情是“取出一个白球一个红球”,可分2步解决,第1步取一个白球,8种取法;第2步取一个红球,10种取法,由分步乘法计数原理,共有8×10=80种不同取法.(2)一件事情是“取出两个白球”,可分为2步解决,先从8个白球中取一个,8种取法;再从余下的7个白球中取一个,有7种取法,但先取1号球后取2号球与先取2号球后取1号球,结果是相同的.故共有8×72=(3)一件事情是“取出一个白球一个红球或者取出两个白球”,可分两类解决,取出一个白球一个红球有80种不同取法;取出两个白球有28种不同取法,由分类加法计数原理,共有80+28=108种不同取法.(4)一件事情是“取出两白球或取出两红球”,可分两类解决,取出两白球有28种不同取法;取出两红球有10×92=45种不同取法,由分类加法计数原理知,共有28+45=17.解如果A,C同色,涂色方法有3×2×1×2=12(种),如果A,C不同色,涂色方法有3×2×1×1=6(种),所以不同的涂色方法有12+6=18(种).即不同方法的种数为18.18.解(1)分三类:第一类选语文老师,有12种不同选法;第二类选数学老师,有13种不同选法;第三类选英语老师,有15种不同选法,共

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论