云南省保山市名校2024届数学八上期末检测模拟试题含解析_第1页
云南省保山市名校2024届数学八上期末检测模拟试题含解析_第2页
云南省保山市名校2024届数学八上期末检测模拟试题含解析_第3页
云南省保山市名校2024届数学八上期末检测模拟试题含解析_第4页
云南省保山市名校2024届数学八上期末检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省保山市名校2024届数学八上期末检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图若△ABE≌△ACF,且AB=5,AE=2,则EC的长为(

)A.2

B.3

C.4

D.52.如图,在△ABC中,点D是边BC上的点(与B、C两点不重合),过点D作DE∥AC,DF∥AB,分别交AB、AC于E、F两点,下列说法正确的是()A.若AD平分∠BAC,则四边形AEDF是菱形B.若BD=CD,则四边形AEDF是菱形C.若AD垂直平分BC,则四边形AEDF是矩形D.若AD⊥BC,则四边形AEDF是矩形3.若点P(1﹣3m,2m)的横坐标与纵坐标互为相反数,则点P一定在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.一辆慢车与一辆快车分别从甲、乙两地同时出发,匀速相向而行,两车在途中相遇后分别按原速同时驶往甲地,两车之间的距离s(km)与慢车行驶时间t(h)之间的函数图象如图所示,则下列说法中:①甲、乙两地之间的距离为560km;②快车速度是慢车速度的1.5倍;③快车到达甲地时,慢车距离甲地60km;④相遇时,快车距甲地320km;正确的是()A.①② B.①③ C.①④ D.①③④5.如下图,将绕点顺时针方向旋转得,若,则等于()A. B. C. D.6.如图,已知AB∥CD,DE⊥AC,垂足为E,∠A=120°,则∠D的度数为()A.30° B.60° C.50° D.40°7.如图,在△ABC中,BO,CO分别平分∠ABC和∠ACB,则∠BOC与∠A的大小关系是()A.∠BOC=2∠A B.∠BOC=90°+∠AC.∠BOC=90°+∠A D.∠BOC=90°-∠A8.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC′=()A.10 B.5 C.4 D.39.下列命题中,是假命题的是()A.对顶角相等 B.同位角相等C.同角的余角相等 D.全等三角形的面积相等10.若a+b=3,ab=-7,则的值为()A.- B.- C.- D.-二、填空题(每小题3分,共24分)11.如图,已知,且,那么是的________(填“中线”或“角平分线”或“高”).12.能使分式的值为零的x的值是______.13.如图,中,点在上,点在上,点在的延长线上,且,若,则的度数是________.14.如图,直线AB∥CD,∠C=44°,∠E为直角,则∠1=_____.15.函数中自变量x的取值范围是______.16.如果一个多边形的内角和为1260°,那么从这个多边形的一个顶点出发共有________条对角线.17.若,则的值是__________.18.如图,在△ABC中,∠ACB=81°,DE垂直平分AC,交AB于点D,交AC于点E.若CD=BC,则∠A等于_____度.三、解答题(共66分)19.(10分)如图,在中,,为上一点,,于点,于点,相交于点.(1)求证:;(2)若,求的长.20.(6分)如图所示,AB//DC,ADCD,BE平分∠ABC,且点E是AD的中点,试探求AB、CD与BC的数量关系,并说明你的理由.21.(6分)如图,在△ABC中,AB=AC=18cm,BC=10cm,AD=2BD.(1)如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.①若点Q的运动速度与点P的运动速度相等,经过2s后,△BPD与△CQP是否全等,请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?22.(8分)如图,等腰中,,点是上一动点,点在的延长线上,且,平分交于,连.(1)如图1,求证:;(2)如图2,当时,求证:.23.(8分)如图,把一张长方形纸片ABCD沿EF折叠,点C与点A重合,点D落在点G处.若长方形的长BC为16,宽AB为8,求:(1)AE和DE的长;(2)求阴影部分的面积.24.(8分)如图,点、、、在一条直线上,,,,交于.(1)求证:.(2)求证:.25.(10分)如图,在平面直角坐标系中,直线l₁:yx与直线l₂:y=kx+b相交于点A(a,3),直线交l₂交y轴于点B(0,﹣5).(1)求直线l₂的解析式;(2)将△OAB沿直线l₂翻折得到△CAB(其中点O的对应点为点C),求证:AC∥OB;(3)在直线BC下方以BC为边作等腰直角三角形BCP,直接写出点P的坐标.26.(10分)如图,AD是△ABC的中线,AB=AC=13,BC=10,求AD长.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据全等三角形的对应边相等解答即可.【题目详解】∵△ABE≌△ACF,∴AC=AB=5,∴EC=AC-AE=5-2=3.故答案为:B.【题目点拨】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.2、A【分析】由矩形的判定和菱形的判定即可得出结论.【题目详解】解:A选项:若AD平分∠BAC,则四边形AEDF是菱形;正确;B选项:若BD=CD,则四边形AEDF是平行四边形,不一定是菱形;错误;C选项:若AD垂直平分BC,则四边形AEDF是菱形,不一定是矩形;错误;D选项:若AD⊥BC,则四边形AEDF是平行四边形,不一定是矩形;错误;故选A.【题目点拨】本题考查了矩形的判定、菱形的判定;熟记菱形和矩形的判定方法是解决问题的关键.3、B【分析】根据互为相反数的两个数的和为1,求出m的值,求出点P的坐标,进而判断点P所在的象限.【题目详解】解:∵点P(1﹣3m,2m)的横坐标与纵坐标互为相反数,∴2m=﹣(1﹣3m),解得m=1,∴点P的坐标是(﹣2,2),∴点P在第二象限.故选:B.【题目点拨】本题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为1,y轴上的点横坐标为1.4、B【分析】根据函数图象直接得出甲乙两地之间的距离;根据题意得出慢车往返分别用了4小时,慢车行驶4小时的距离,快车3小时即可行驶完,进而求出快车速度以及利用两车速度之比得出慢车速度;设慢车速度为3xkm/h,快车速度为4xkm/h,由(3x+4x)×4=560,可得x=20,从而得出快车的速度是80km/h,慢车的速度是60km/h.由题意可得出:快车和慢车相遇地离甲地的距离,当慢车行驶了7小时后,快车已到达甲地,可求出此时两车之间的距离即可.【题目详解】由题意可得出:甲乙两地之间的距离为560千米,故①正确;由题意可得出:慢车和快车经过4个小时后相遇,出发后两车之间的距离开始增大直到快车到达甲地后两车之间的距离开始缩小,由图分析可知快车经过3个小时后到达甲地,此段路程慢车需要行驶4小时,因此慢车和快车的速度之比为3:4,故②错误;∴设慢车速度为3xkm/h,快车速度为4xkm/h,∴(3x+4x)×4=560,x=20∴快车的速度是80km/h,慢车的速度是60km/h.由题意可得出:快车和慢车相遇地离甲地的距离为4×60=240km,故④错误,当慢车行驶了7小时后,快车已到达甲地,此时两车之间的距离为240-3×60=60km,故③正确.故选B.【题目点拨】此题主要考查了待定系数法求一次函数解析式以及一次函数的应用,读懂图,获取正确信息是解题关键.5、C【分析】根据旋转的性质,得∠ACA′=43°,=∠A′,结合垂直的定义和三角形内角和定理,即可求解.【题目详解】∵将绕点顺时针方向旋转得,点A对应点A′,∴∠ACA′=43°,=∠A′,∵,∴∠A′=180°-90°-43°=47°,∴=∠A′=47°.故选C.【题目点拨】本题主要考查旋转的性质和三角形内角和定理,掌握旋转的性质以及三角形内角和等于180°,是解题的关键.6、A【解题分析】分析:根据平行线的性质求出∠C,求出∠DEC的度数,根据三角形内角和定理求出∠D的度数即可.详解:∵AB∥CD,∴∠A+∠C=180°.∵∠A=120°,∴∠C=60°.∵DE⊥AC,∴∠DEC=90°,∴∠D=180°﹣∠C﹣∠DEC=30°.故选A.点睛:本题考查了平行线的性质和三角形内角和定理的应用,能根据平行线的性质求出∠C的度数是解答此题的关键.7、C【题目详解】∵BO平分∠ABC,CO平分∠ACB,

∴∠OBC=∠ABC,∠OCB=∠ACB,

∴∠OBC+∠OCB=(∠ABC+∠ACB))=(180°-∠A)=90°−∠A,

根据三角形的内角和定理,可得

∠OBC+∠OCB+∠BOC=180°,

∴90°-∠A+∠BOC=180°,

∴∠BOC=90°+∠A.

故选C.【题目点拨】(1)此题主要考查了三角形的内角和定理,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°;(2)此题还考查了角平分线的定义,要熟练掌握,解答此题的关键是要明确:一个角的平分线把这个角分成两个大小相同的角.8、B【分析】先求出一个顶点从刻度“1”平移到刻度“10”的距离,再根据平移的性质得出答案.【题目详解】解:∵把三角板的斜边紧靠直尺平移,一个顶点从刻度“1”平移到刻度“10”,∴三角板向右平移了1个单位,∴顶点C平移的距离CC′=1.故选B.【题目点拨】本题考查了平移的性质,结合图形及性质定理是解题的关键.9、B【分析】根据对顶角得性质、平行线得性质、余角得等于及全等三角形得性质逐一判断即可得答案.【题目详解】A.对顶角相等是真命题,故该选项不合题意,B.两直线平行,同位角相等,故该选项是假命题,符合题意,C.同角的余角相等是真命题,故该选项不合题意,D.全等三角形的面积相等是真命题,故该选项不合题意.故选:B.【题目点拨】本题主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10、C【解题分析】试题解析:原式=,∵a+b=3,ab=-7,∴原式=.故选C.二、填空题(每小题3分,共24分)11、中线【分析】通过证明,可得,从而得证是的中线.【题目详解】∵∴∵,∴∴∴是的中线故答案为:中线.【题目点拨】本题考查了全等三角形的问题,掌握全等三角形的性质以及判定定理是解题的关键.12、1【分析】根据分式值为零,分子为零且分母不为零求解.【题目详解】解:∵分式的值为0,∴|x|-1=0,x+1≠0解得x=1.故答案为:1.【题目点拨】本题考查分式的值为零的条件.13、70°【分析】根据三角形内角和定理求出x+y=145°,在△FDC中,根据三角形内角和定理求出即可.【题目详解】解:∵∠DCE=∠DEC,∠DFG=∠DGF,

∴设∠DCE=∠DEC=x,∠DFG=∠DGF=y,

则∠FEG=∠DEC=x,

∵在△GFE中,∠EFG=35°,

∴∠FEG+∠DGF=x+y=180°-35°=145°,

即x+y=145°,

在△FDC中,∠CDF=180°-∠DCE-∠DFC=180°-x-(y-35°)

=215°-(x+y)

=70°,

故答案为:70°.【题目点拨】本题考查了三角形内角和定理,解题的关键是学会利用参数解决问题,属于中考常考题型.14、【题目详解】试题分析:如图,过E作EF∥AB,根据平行于同一直线的两直线互相平行,求出AB∥CD∥EF,根据平行线的性质得出∠C=∠FEC=44°,∠BAE=∠FEA,求出∠BAE=90°-44°=46°,即可求出∠1=180°-46°=134°.15、【分析】根据二次根式及分式有意义的条件,结合所给式子得到关于x的不等式组,解不等式组即可求出x的取值范围.【题目详解】由题意得,,解得:-2<x≤3,故答案为-2<x≤3.【题目点拨】本题考查了二次根式及分式有意义的条件,注意掌握二次根式有意义:被开方数为非负数,分式有意义分母不为零.16、1【分析】设此多边形的边数为x,根据多边形内角和公式求出x的值,再计算对角线的条数即可.【题目详解】设此多边形的边数为x,由题意得:(x-2)×180=1210,解得;x=9,从这个多边形的一个顶点出发所画的对角线条数:9-3=1,故答案为1.【题目点拨】本题考查了多边形内角和公式,多边形的对角线,关键是掌握多边形的内角和公式180(n-2),n边形的一个顶点有(n-3)条对角线.17、49【分析】根据平方差公式把原式进行因式分解,把整体代入分解后的式子,化简后再次利用整体代入即可得.【题目详解】,原式,故答案为:49.【题目点拨】考查了“整体代换”思想在因式分解中的应用,平方差公式,熟记平方差公式,通过利用整体代入式解题关键.18、1【分析】先根据垂直平分线的性质得出,再根据等腰三角形的性质、三角形的外角性质可得,最后利用三角形的内角和定理即可得.【题目详解】垂直平分AC又在中,则解得故答案为:1.【题目点拨】本题考查了垂直平分线的性质、等腰三角形的性质(等边对等角)、三角形的内角和定理等知识点,利用等腰三角形的性质和外角的性质求出与的等量关系是解题关键.三、解答题(共66分)19、(1)证明见解析;(2).【分析】(1)先求出,根据30°所对的直角边是斜边的一半,可得,从而得出,然后根据等边对等角可得,然后利用外角的性质和等角对等边可证出,再利用等角对等边可得,从而得出,最后利用ASA即可证出;(2)先根据已知条件即可求出BD和CD,从而求出DF,再根据全等三角形的性质即可求出FC和FG,从而求出CG,最后根据30°所对的直角边是斜边的一半即可求出.【题目详解】(1)证明:连接,∵,∴,∵,∴,∴,∵,∴,∴,∵,∴,∵,∴,∵,∴,即,∴∵,∴,∴∵,∴,∵,∴,在和中∴;解:(2)∵,∴,∵,∴,∵,∴,∴,∴在中,,,∴.【题目点拨】此题考查的是直角三角形的性质、等腰三角形的判定及性质和全等三角形的判定及性质,掌握30°所对的直角边是斜边的一半、等边对等角和等角对等边和全等三角形的判定及性质是解决此题的关键.20、BC=AB+CD,理由见解析【分析】过点E作EF⊥BC于点F,只要证明△ABE≌△FBE(AAS),Rt△CDE≌Rt△CFE(HL)

即可解决问题;【题目详解】解:证明:∵AB//DC,ADCD,∴∠A=∠D=90°,过点E作EF⊥BC于点F,则∠EFB=∠A=90°,

又∵BE平分∠ABC,

∴∠ABE=∠FBE,∵BE=BE,

∴△ABE≌△FBE(AAS),

∴AE=EF,AB=BF,

又点E是AD的中点,

∴AE=ED=EF,

∴Rt△CDE≌Rt△CFE(HL),

∴CD=CF,

∴BC=CF+BF=AB+CD.【题目点拨】本题考查全等三角形的判定和性质、角平分线的定义等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.21、(1)①△BPD与△CQP全等,理由见解析;②当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等;(2)经过90s点P与点Q第一次相遇在线段AB上相遇.【分析】(1)①由“SAS”可证△BPD≌△CQP;

②由全等三角形的性质可得BP=PC=BC=5cm,BD=CQ=6cm,可求解;

(2)设经过x秒,点P与点Q第一次相遇,列出方程可求解.【题目详解】解:(1)①△BPD与△CQP全等,理由如下:∵AB=AC=18cm,AD=2BD,∴AD=12cm,BD=6cm,∠B=∠C,∵经过2s后,BP=4cm,CQ=4cm,∴BP=CQ,CP=6cm=BD,在△BPD和△CQP中,,∴△BPD≌△CQP(SAS),②∵点Q的运动速度与点P的运动速度不相等,∴BP≠CQ,∵△BPD与△CQP全等,∠B=∠C,∴BP=PC=BC=5cm,BD=CQ=6cm,∴t=,∴点Q的运动速度=cm/s,∴当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等;(2)设经过x秒,点P与点Q第一次相遇,由题意可得:x﹣2x=36,解得:x=90,点P沿△ABC跑一圈需要(s)∴90﹣23×3=21(s),∴经过90s点P与点Q第一次相遇在线段AB上相遇.【题目点拨】本题考查了全等三角形的判定和性质,等腰三角形的性质,一元一次方程的应用,掌握全等三角形的判定是本题的关键.22、(1)证明见解析;(2)证明见解析.【分析】(1)根据题意,通过证明,再由等腰三角形的性质即可得解;(2)根据题意,在FB上截取,连接AM,通过证明,再由等边三角形的判定及性质进行证明即可得解.【题目详解】(1)∵AF平分∠CAE,∴,∵,∴,在和中,,∴,∴.∵,∴,∴.(2)如下图,在FB上截取,连接AM.∵,∴,,在和中,,∴,∴,.∵,∴是等边三角形,∴,∴,∵,∴为等边三角形,∴,∵,∴,即.【题目点拨】本题主要考查了三角形全等的判定及等边三角形的判定及性质,熟练掌握相关证明方法是解决本题的关键.23、(1)DE=6,AE=10;(2)阴影部分的面积为.【分析】(1)设,则,依据勾股定理列方程,即可得到AE和DE的长;(2)过G作于M,依据面积法即可得到GM的长,进而得出阴影部分的面积.【题目详解】(1)由折叠可得,,设,则,∵在中,,∴,解得x=6,∴DE=6,AE=10;(2)如下图所示,过G作GM⊥AD于M,∵GE=DE=6,AE=10,AG=8,且,∴,∴,即阴影部分的面积为.【题目点拨】本题主要考查了折叠,勾股定理以及三角形面积的求法,熟练掌握三角形的综合应用方法是解决本题的关键.24、(1)见解析;(2)见解析.【分析】(1)由平行线的性质得出∠B=∠E,∠BCA=∠EFD,证出BC=EF,即可得出结论;

(2)由全等三角形的性质得出AC=DF,∠ACB=∠DFE,证明△ACO≌△DFO(AAS),即可得出结论.【题目详解】(1)证明:∵AB∥DE,

∴∠B=∠E,

∵AC∥FD,

∴∠BCA=∠EFD,

∵FB=EC,

∴BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(ASA)

(2)证明:∵△ABC≌△DEF,

∴AC=DF,∠ACB=∠DFE,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论