湖北省枣阳市钱岗中学2024届数学八上期末质量跟踪监视模拟试题含解析_第1页
湖北省枣阳市钱岗中学2024届数学八上期末质量跟踪监视模拟试题含解析_第2页
湖北省枣阳市钱岗中学2024届数学八上期末质量跟踪监视模拟试题含解析_第3页
湖北省枣阳市钱岗中学2024届数学八上期末质量跟踪监视模拟试题含解析_第4页
湖北省枣阳市钱岗中学2024届数学八上期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省枣阳市钱岗中学2024届数学八上期末质量跟踪监视模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.下列各数中,属于无理数的是()A. B.1.414 C. D.2.下列各数中无理数是()A.5.3131131113 B. C. D.3.化简12的结果是()A.43 B.23 C.32 D.264.如图,△ABC是等边三角形,AD是BC边上的高,E是AC的中点,P是AD上的一个动点,当PC与PE的和最小时,∠CPE的度数是()A.30° B.45° C.60° D.90°5.如图,在中,,以顶点为圆心,适当长为半径画弧,分别交于点,再分别以点为圆心大于的长为半径画弧,两弧交于点,作射线交边于点,若,则的面积是()A.15 B.18 C.36 D.726.在下图所示的几何图形中,是轴对称图形且对称轴最多的图形的是()A. B. C. D.7.《九章算术》中记载:“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?设合伙人数为x人,羊价为y钱,根据题意,可列方程组为()A. B. C. D.8.下列图标中,既是轴对称图形,又是中心对称图形的是()A. B.C. D.9.点先向左平移个单位长度,再向上平移个单位长度得到的点的坐标是()A. B. C. D.10.下列各式中,是最简二次根式的是()A. B. C. D.11.下列图形中,是轴对称图形的有()A.个 B.个 C.个 D.个12.如图,在▱ABCD中,AD=2AB,F是AD的中点,E是AB上一点,连接CF、EF、EC,且CF=EF,下列结论正确的个数是()①CF平分∠BCD;②∠EFC=2∠CFD;③∠ECD=90°;④CE⊥AB.A.1个 B.2个 C.3个 D.4个二、填空题(每题4分,共24分)13.如图,点P、M、N分别在等边△ABC的各边上,且MP⊥AB于点P,MN⊥BC于点M,PV⊥AC于点N,若AB=12cm,求CM的长为______cm.14.已知多边形的内角和等于外角和的三倍,则边数为___________.15.如图所示,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,正方形A,B,C的面积分别是8cm1,10cm1,14cm1,则正方形D的面积是__________cm1.16.在中,,则的度数是________°.17.若关于的二次三项式是完全平方式,则的值为________________.18.当x=______________时,分式的值是0?三、解答题(共78分)19.(8分)如图,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0, 3),点B在第一象限,∠OAB的平分线交x轴于点P,把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD,连接DP.求:DP20.(8分)在平面直角坐标系中的位置如图所示.(1)作出关于轴对称的,并写出各顶点的坐标;(2)将向右平移6个单位,作出平移后的并写出各顶点的坐标;(3)观察和,它们是否关于某直线对称?若是,请用粗线条画出对称轴.21.(8分)快车和慢车都从甲地驶向乙地,两车同时出发行在同一条公路上,途中快车休息1小时后加速行驶比慢车提前0.5小时到达目的地,慢车没有体息整个行驶过程中保持匀速不变.设慢车行驶的时间为x小时,快车行驶的路程为y1千米,慢车行驶的路程为y2千米,图中折线OAEC表示y1与x之间的函数关系,线段OD表示y2与x之间的函数关系,请解答下列问题:(1)甲、乙两地相距千米,快车休息前的速度是千米/时、慢车的速度是千米/时;(2)求图中线段EC所表示的y1与x之间的函数表达式;(3)线段OD与线段EC相交于点F,直接写出点F的坐标,并解释点F的实际意义.22.(10分)计算题(1)先化简,再求值:其中a=1.(2)解方程:23.(10分)如图1,在平面直角坐标系中,A(﹣3,0)、B(0,7)、C(7,0),∠ABC+∠ADC=180°,BC⊥CD.(1)求证:∠ABO=∠CAD;(2)求四边形ABCD的面积;(3)如图2,E为∠BCO的邻补角的平分线上的一点,且∠BEO=45°,OE交BC于点F,求BF的长.24.(10分)在日历上,我们可以发现其中某些数满足一定的规律,如图是2020年1月份的日历.如图所选择的两组四个数,分别将每组数中相对的两数相乘,再相减,例如:9×11﹣3×17=,12×14﹣6×20=,不难发现,结果都是.(1)请将上面三个空补充完整;(2)请你利用整式的运算对以上规律进行证明.25.(12分)已知点A(a+2b,1),B(7,a﹣2b).(1)如果点A、B关于x轴对称,求a、b的值;(2)如果点A、B关于y轴对称,求a、b的值.26.如图1,直线y=﹣x+b分别与x轴,y轴交于A(6,0),B两点,过点B的另一直线交x轴的负半轴于点C,且OB:OC=3:1(1)求直线BC的解析式;(2)直线y=ax﹣a(a≠0)交AB于点E,交BC于点F,交x轴于点D,是否存在这样的直线EF,使S△BDE=S△BDF?若存在,求出a的值;若不存在,请说明理由;(3)如图2,点P为A点右侧x轴上一动点,以P为直角顶点,BP为腰在第一象限内作等腰直角三角形△BPQ,连接QA并延长交y轴于点K.当P点运动时,K点的位置是否发生变化?若不变,求出它的坐标;如果会发生变化,请说明理由.

参考答案一、选择题(每题4分,共48分)1、C【分析】无理数就是无限循环小数,依据定义即可作出判断.【题目详解】A.是有理数,错误B.1.414是有限小数,是有理数,错误C.是无限不循环小数,是无理数,正确D.=2是整数,错误故选C.【题目点拨】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,6,0.8080080008…(每两个8之间依次多1个0)等形式.2、C【分析】根据无理数的定义对各选项进行逐一分析即可.【题目详解】解:A、5.3131131113是有限小数,属于有理数;B、是分数,属于有理数;C、,是无理数;D、=-3,是整数,属于有理数.故选C.【题目点拨】本题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3、B【解题分析】试题解析:12=故选B.考点:二次根式的化简.4、C【分析】连接BE,则BE的长度即为PE与PC和的最小值.再利用等边三角形的性质可得∠PBC=∠PCB=30°,即可解决问题;【题目详解】解:如连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵△ABC是等边三角形,∴∠BCE=60°,∵BA=BC,AE=EC,∴BE⊥AC,∴∠BEC=90°,∴∠EBC=30°,∵PB=PC,∴∠PCB=∠PBC=30°,∴∠CPE=∠PBC+∠PCB=60°,故选:C.【题目点拨】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.5、B【解题分析】作DE⊥AB于E,根据角平分线的性质得到DE=DC=3,根据三角形的面积公式计算即可.【题目详解】如图,作DE⊥AB于E,由基本尺规作图可知,AD是△ABC的角平分线,∵∠C=90°,DE⊥AB,∴DE=DC=3,∴△ABD的面积=×AB×DE=×12×3=18,故选B.【题目点拨】本题考查的是角平分线的性质、基本作图,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6、A【解题分析】根据轴对称图形的定义:在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,这条直线就叫做对称轴,逐一判定即可.【题目详解】A选项,是轴对称图形,有4条对称轴;B选项,是轴对称图形,有2条对称轴;C选项,不是轴对称图形;D选项,是轴对称图形,有3条对称轴;故选:A.【题目点拨】此题主要考查对轴对称图形以及对称轴的理解,熟练掌握,即可解题.7、A【分析】设合伙人数为人.羊价为元,根据“若每人出5钱,还差45钱;若每人出7钱,还差3钱”,即可得出关于,的二元一次方程组,此题得解.【题目详解】解:设合伙人数为人.羊价为元,依题意,得:.故选:A.【题目点拨】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.8、D【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【题目详解】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选:D.【题目点拨】本题考查了轴对称图形与中心对称的概念,熟悉基本概念及判断方法是解题的关键.9、B【分析】直接利用平移中点的变化规律求解即可,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【题目详解】∵2-3=-1,-1+2=1,∴得到的点的坐标是(-1,1).故选B.【题目点拨】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.10、A【分析】根据最简二次根式的定义判断即可.需要符合以下两个条件:

1.被开方数中不含能开得尽方的因数或因式;2.被开方数的因数是整数,因式是整式.【题目详解】解:A.不能继续化简,故正确;B.,故错误;C.,故错误;D.故错误.故选:A.【题目点拨】本题考查最简二次根式的定义,理解掌握定义是解答关键.11、C【解题分析】根据轴对称图形的概念对各个图案进行判断即可得解.【题目详解】解:第1个是轴对称图形,故本选项正确;第2个是轴对称图形,故本选项正确;第3个是轴对称图形,故本选项正确;第4个不是轴对称图形,故本选项错误.故选:C.【题目点拨】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.12、D【解题分析】①只要证明DF=DC,利用平行线的性质可得∠DCF=∠DFC=∠FCB;②延长EF和CD交于M,根据平行四边形的性质得出AB∥CD,根据平行线的性质得出∠A=∠FDM,证△EAF≌△MDF,推出EF=MF,求出CF=MF,求出∠M=∠FCD=∠CFD,根据三角形的外角性质求出即可;③④求出∠ECD=90°,根据平行线的性质得出∠BEC=∠ECD,即可得出答案.【题目详解】解:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∵AF=DF,AD=2AB,∴DF=DC,∴∠DCF=∠DFC=∠FCB,∴CF平分∠BCD,故①正确,延长EF和CD交于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠FDM,在△EAF和△MDF中,∴△EAF≌△MDF(ASA),∴EF=MF,∵EF=CF,∴CF=MF,∴∠FCD=∠M,∵由(1)知:∠DFC=∠FCD,∴∠M=∠FCD=∠CFD,∵∠EFC=∠M+∠FCD=2∠CFD;故②正确,∵EF=FM=CF,∴∠ECM=90°,∵AB∥CD,∴∠BEC=∠ECM=90°,∴CE⊥AB,故③④正确,故选D.【题目点拨】本题考查了平行四边形的性质,平行线的性质,全等三角形的性质和判定,等腰三角形的性质和判定的应用,能综合运用知识点进行推理是解此题的关键.二、填空题(每题4分,共24分)13、4【分析】根据等边三角形的性质得出∠A=∠B=∠C,进而得出∠MPB=∠NMC=∠PNA=90°,根据平角的义即可得出∠NPM=∠PMN=∠MNP,即可证△PMN是等边三角形:根据全等三角形的性质得到PA=BM=CN,PB=MC=AN,从而求得MC+NC=AC=12cm,再根据直角三角形30°角所对的直角边等于斜边的一半得出2MC=NC,即司得MC的长.【题目详解】∵△ABC是等边三角形,∴∠A=∠B=∠C.∵MP⊥AB,MN⊥BC,PN⊥AC,∴∠MPB=∠NMC=∠PNA=90°,∴∠PMB=∠MNC=∠APN,∠NPM=∠PMN=∠MNP,∴△PMN是等边三角形∴PN=PM=MN,∴△PBM≌△MCN≌△NAP(AAS),∴PA=BM=CN,PB=MC=AN,MC+NC=AC=12cm,∵∠C=60°,∴∠MNC=30°,∴NC=2CM,∴MC+NC=3CM=12cm,∴CM=4cm.故答案为:4cm【题目点拨】本题考查了等边三角形的判定和性质,平角的意义,三角形全等的性质等,得出∠NPM=∠PMN=∠MNP是本题的关键.14、1【分析】首先设边数为n,由题意得等量关系:内角和=360°×3,根据等量关系列出方程,可解出n的值.【题目详解】解:设边数为n,由题意得:110(n﹣2)=360×3,解得:n=1,故答案为:1.【题目点拨】此题主要考查了多边形的内角与外角,关键是掌握多边形内角和与外角和定理:多边形的内角和(n﹣2)•110°(n≥3)且n为整数),多边形的外角和等于360度.15、17【解题分析】试题解析:根据勾股定理可知,∵S正方形1+S正方形1=S大正方形=2,S正方形C+S正方形D=S正方形1,S正方形A+S正方形B=S正方形1,∴S大正方形=S正方形C+S正方形D+S正方形A+S正方形B=2.∴正方形D的面积=2-8-10-14=17(cm1).16、60【分析】用分别表示出,再根据三角形的内角和为即可算出答案.【题目详解】∵∴∴∴∴故答案为:60【题目点拨】本题考查了三角形的内角和,根据题目中的关系用分别表示出是解题关键.17、9或-7【分析】根据完全平方公式:,观察其构造,即可得出m的值.【题目详解】解:当时,;当时,.故答案为:9或-7.【题目点拨】本题主要考查的是完全平方的公式,观察公式的构成是解题的关键.18、-1【解题分析】由题意得,解之得.三、解答题(共78分)19、DP=23,点D的坐标为【分析】根据等边三角形的每一个角都是60°可得∠OAB=60°,然后根据对应边的夹角∠OAB为旋转角求出∠PAD=60°,再判断出△APD是等边三角形,根据等边三角形的三条边都相等可得DP=AP,根据,∠OAB的平分线交x轴于点P,∠OAP=30°,利用三角函数求出AP,从而得到DP,再求出∠OAD=90°,然后写出点D的坐标即可.【题目详解】∵△AOB是等边三角形,∴∠OAB=60∵△AOP绕着点A按逆时针方向旋转边AO与AB重合,∴旋转角=∠OAB=∠PAD=60∘,∴△APD是等边三角形,∴DP=AP,∠PAD=60∵A的坐标是(0, 3),∠OAB的平分线交x轴于点P,∴∠OAP=30∘,∴DP=AP=23∵∠OAP=30∘,∴∠OAD=30∴点D的坐标为(23【题目点拨】本题考查了坐标与图形的变化,解题的关键是熟练的掌握坐标与图形的变化的相关知识点.20、(1)图见解析;点,点,点;(2)图见解析;点,点,点;(3)是,图见解析【分析】(1)先找到A、B、C关于y轴的对称点,然后连接、、即可,然后根据平面直角坐标系写出A、B、C的坐标,根据关于y轴对称的两点坐标关系:横坐标互为相反数,纵坐标相等即可写出的坐标;(2)先分别将A、B、C向右平移6个单位,得到,然后连接、、即可,然后根据平移的坐标规律:横坐标左减右加即可写出的坐标;(3)根据两个图形成轴对称的定义,画出对称轴即可.【题目详解】解:(1)先找到A、B、C关于y轴的对称点,然后连接、、,如图所示:即为所求,由平面直角坐标系可知:点A(0,4),点B(-2,2),点C(-1,1)∴点,点,点;(2)先分别将A、B、C向右平移6个单位,得到,然后连接、、,如图所示:即为所求,∵点A(0,4),点B(-2,2),点C(-1,1)∴点,点,点;(3)如图所示,和关于直线l对称,所以直线l即为所求.【题目点拨】此题考查的是画已知图形关于y轴对称的图形、画已知图形平移后的图形和画两个图形的对称轴,掌握关于y轴对称的两点坐标关系:横坐标互为相反数,纵坐标相等和平移的坐标规律:横坐标左减右加是解决此题的关键.21、(1)300,75,60;(2)y1=100x﹣150(3≤x≤4.5);(3)点F的坐标为(3.75,225),点F代表的实际意义是在3.75小时时,快车与慢车行驶的路程相等【分析】(1)根据图象可直接得出甲、乙两地的距离;根据图象可得A、B两点坐标,然后利用速度=路程÷时间求解即可;(2)根据快车休息1小时可得点E坐标,根据快车比慢车提前0.5小时到达目的地可得点C坐标,然后利用待定系数法求解即可;(3)易得y2与x之间的函数关系式,然后只要求直线EC与直线OD的交点即得点F坐标,为此只要解由直线EC与直线OD的的解析式组成的方程组即可,进而可得点F的实际意义.【题目详解】解:(1)甲、乙两地相距300千米,快车休息前的的速度为:150÷2=75千米/小时,慢车的速度为:150÷2.5=60千米/小时.故答案为:300,75,60;(2)由题意可得,点E的横坐标为:2+1=3,则点E的坐标为(3,150),快车从点E到点C用的时间为:300÷60﹣0.5=4.5(小时),则点C的坐标为(4.5,300),设线段EC所表示的y1与x之间的函数表达式是y1=kx+b,把E、C两点代入,得:,解得:,即线段EC所表示的y1与x之间的函数表达式是y1=100x﹣150(3≤x≤4.5);(3)y2与x之间的函数关系式为:,设点F的横坐标为a,则60a=100a﹣150,解得:a=3.75,则60a=225,即点F的坐标为(3.75,225),点F代表的实际意义是在3.75小时时,快车与慢车行驶的路程相等.【题目点拨】本题是一次函数的应用问题,主要考查了待定系数法求一次函数的解析式、一次函数图象上点的坐标特征和两个函数的交点等知识,属于常考题型,正确读懂图象信息、熟练掌握一次函数的相关知识是解题的关键.22、(2),2;(2)x=-2【分析】(2)先计算括号里面的,再因式分解,然后将除法转化为乘法,约分即可.

(2)去掉分母,将分式方程转化为整式方程,求出解后再检验.【题目详解】解:(2)===,将a=2代入,原式=2;(2)去分母得:,去括号得:,移项合并得:,系数化为2得:x=-2.经检验:x=-2是原方程的解.【题目点拨】本题考查了分式的化简求值和解分式方程,解题的关键是掌握运算法则和解法.23、(1)见解析;(2)50;(3)1.【分析】(1)根据四边形的内角和定理、直角三角形的性质证明;(2)过点A作AF⊥BC于点F,作AE⊥CD的延长线于点E,作DG⊥x轴于点G,证明△ABF≌△ADE、△ABO≌△DAG,得到D点的坐标为(4,﹣3),根据三角形的面积公式计算;(3)作EH⊥BC于点H,作EG⊥x轴于点G,根据角平分线的性质得到EH=EG,证明△EBH≌△EOG,得到EB=EO,根据等腰三角形的判定定理解答.【题目详解】(1)在四边形ABCD中,∵∠ABC+∠ADC=180°,∴∠BAD+∠BCD=180°,∵BC⊥CD,∴∠BCD=90°,∴∠BAD=90°,∴∠BAC+∠CAD=90°,∵∠BAC+∠ABO=90°,∴∠ABO=∠CAD;(2)过点A作AF⊥BC于点F,作AE⊥CD的延长线于点E,作DG⊥x轴于点G,如图1∵B(0,1),C(1,0),∴OB=OC,∴∠BCO=45°,∵BC⊥CD,∴∠BCO=∠DCO=45°,∵AF⊥BC,AE⊥CD,∴AF=AE,∠FAE=90°,∴∠BAF=∠DAE,在△ABF和△ADE中,,∴△ABF≌△ADE(AAS),∴AB=AD,同理,△ABO≌△DAG,∴DG=AO,BO=AG,∵A(﹣3,0)B(0,1),∴D(4,﹣3),S四ABCD=AC•(BO+DG)=50;(3)过点E作EH⊥BC于点H,作EG⊥x轴于点G,如图2∵E点在∠BCO的邻补角的平分线上,∴EH=EG,∵∠BCO=∠BEO=45°,∴∠EBC=∠EOC,在△EBH和△EOG中,,∴△EBH≌△EOG(AAS),∴EB=EO,∵∠BEO=45°,∴∠EBO=∠EOB=61.5°,又∠OBC=45°,∴∠BOE=∠BFO=61.5°,∴BF=BO=1.【题目点拨】本题考查的是全等三角形的判定和性质、角平分线的性质,掌握全等三角形的判定定理和性质定理是解题的关键.24、(1)1,1,1;(2)证明见解析.【分析】(1)直接利用已知数据计算求出即可;(2)设四个数围起来的中间的数为x,则四个数依次为x﹣7,x﹣1,x+1,x+7,列式计算即可得出结论.【题目详解】(1)9×11﹣3×17=1,12×14﹣6×20=1,不难发现,结果都是:1.故答案为:1,1,1.(2)设四个数围起来的中间的数为x,则四个数依次为x﹣7,x﹣1,x+1,x+7则(x﹣1)·(x+1)﹣(x﹣7)·(x+7)===1.【题目点拨】本题考查了整式的混合运算,正确发现数字之间的变化规律是解答本题的关键.25、(1);(2).【分析】(1)根据关于x轴的对称点的坐标特点:横坐标不

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论