福建省龙岩市新罗区龙岩市第二中学2024届八年级数学第一学期期末质量跟踪监视试题含解析_第1页
福建省龙岩市新罗区龙岩市第二中学2024届八年级数学第一学期期末质量跟踪监视试题含解析_第2页
福建省龙岩市新罗区龙岩市第二中学2024届八年级数学第一学期期末质量跟踪监视试题含解析_第3页
福建省龙岩市新罗区龙岩市第二中学2024届八年级数学第一学期期末质量跟踪监视试题含解析_第4页
福建省龙岩市新罗区龙岩市第二中学2024届八年级数学第一学期期末质量跟踪监视试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省龙岩市新罗区龙岩市第二中学2024届八年级数学第一学期期末质量跟踪监视试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.某科普小组有5名成员,身高分别为(单位:cm):160,165,170,163,1.增加1名身高为165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数不变,方差不变 B.平均数不变,方差变大C.平均数不变,方差变小 D.平均数变小,方差不变2.某工厂计划生产300个零件,由于采用新技术,实际每天生产零件的数量是原计划的2倍,因此提前5天完成任务.设原计划每天生产零件x个,根据题意,所列方程正确的是()A.﹣=5 B.﹣=5C.﹣=5 D.﹣=53.现实世界中,对称现象无处不在,中国的黑体字中有些也具有对称性,下列黑体字是轴对称图形的是()A.诚 B.信 C.自 D.由4.的算术平方根是()A.5 B.﹣5 C. D.5.下列等式正确的是()A.(﹣1)﹣3=1 B.(﹣2)3×(﹣2)3=﹣26C.(﹣5)4÷(﹣5)4=﹣52 D.(﹣4)0=16.把8a3﹣8a2+2a进行因式分解,结果正确的是()A.2a(4a2﹣4a+1) B.8a2(a﹣1) C.2a(2a﹣1)2 D.2a(2a+1)27.下列各命题的逆命题是真命题的是()A.对顶角相等 B.若,则C.相等的角是同位角 D.若,则8.庐江县自开展创建全省文明县城工作以来,广大市民掀起一股文明县城创建热潮,遵守交通法规成为市民的自觉行动,下面交通标志中是轴对称图形的是()A. B. C. D.

9.在式子,,,,+,9x+,中,分式的个数是()A.5 B.4 C.3 D.210.以下列三个数据为三角形的三边,其中能构成直角三角形的是()A.2,3,4 B.4,5,6 C.5,12,13 D.5,6,711.若x<2,化简+|3-x|的正确结果是()A.-1 B.1 C.2x-5 D.5-2x12.下列命题是假命题的是A.同旁内角互补,两直线平行B.若两个数的绝对值相等,则这两个数也相等C.平行于同一条直线的两条直线也互相平行D.全等三角形的周长相等二、填空题(每题4分,共24分)13.正十边形的外角和为__________.14.如图,A(3,4),B(0,1),C为x轴上一动点,当△ABC的周长最小时,则点C的坐标为_________.15.=______;16.如图,在四边形ABCD中,AD∥BC,AD=5,BC=18,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒3个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动,当运动时间t秒时,以点P,Q,E,D为顶点的四边形是平行四边形,则t的值为_____.17.点P(4,5)关于x轴对称的点的坐标是___________.18.如图,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,则DF的长为________.三、解答题(共78分)19.(8分)(1)解方程组;(2)已知|x+y﹣6|0,求xy的平方根.20.(8分)求下列各式中的.(1);(2).21.(8分)若在一个两位正整数N的个位数与十位数字之间添上数字5,组成一个新的三位数,我们称这个三位数为N的“至善数”,如34的“至善数”为354;若将一个两位正整数M加5后得到一个新数,我们称这个新数为M的“明德数”,如34的“明德数”为1.(1)26的“至善数”是,“明德数”是.(2)求证:对任意一个两位正整数A,其“至善数”与“明德数”之差能被45整除;22.(10分)计算:(1)(2)化简:(3)化简:(4)因式分解:23.(10分)学校准备租用一批汽车,现有甲、乙两种大客车,甲种客车每辆载客量45人,乙种客车每辆载客量30人,已知1辆甲种客车和3辆乙种客车共需租金1240元,3辆甲种客车和2辆乙种客车共需租金1760元.(1)求1辆甲种客车和1辆乙种客车的租金分别是多少元?(2)学校计划租用甲、乙两种客车共8辆,送330名师生集体外出活动,最节省的租车费用是多少?24.(10分)在△ABC中,AB、AC边的垂直平分线分别交BC边于点M、N(1)如图①,若∠BAC=110°,则∠MAN=°,若△AMN的周长为9,则BC=(2)如图②,若∠BAC=135°,求证:BM2+CN2=MN2;(3)如图③,∠ABC的平分线BP和AC边的垂直平分线相交于点P,过点P作PH垂直BA的延长线于点H.若AB=5,CB=12,求AH的长25.(12分)如图1,在平面直角坐标系中,直线:与轴交于点A,且经过点B(2,m),点C(3,0).(1)求直线BC的函数解析式;(2)在线段BC上找一点D,使得△ABO与△ABD的面积相等,求出点D的坐标;(3)y轴上有一动点P,直线BC上有一动点M,若△APM是以线段AM为斜边的等腰直角三角形,求出点M的坐标;(4)如图2,E为线段AC上一点,连结BE,一动点F从点B出发,沿线段BE以每秒1个单位运动到点E,再沿线段EA以每秒个单位运动到A后停止,设点F在整个运动过程中所用时间为t,求t的最小值.26.小明平时喜欢玩“开心消消乐”游戏,本学期在学校组织的几次数学反馈性测试中,小明的数学成绩如下表:月份(第二年元月)(第二年2月)成绩(分)······(1)以月份为x轴,成绩为y轴,根据上表提供的数据在平面直角坐标系中描点;(2)观察(1)中所描点的位置关系,猜想与之间的的函数关系,并求出所猜想的函数表达式;(3)若小明继续沉溺于“开心消消乐“游戏,照这样的发展趋势,请你估计元月(此时)份的考试中小明的数学成绩,并用一句话对小明提出一些建议.

参考答案一、选择题(每题4分,共48分)1、C【解题分析】解:=(160+165+170+163+1)÷5=165,S2原=,=(160+165+170+163+1+165)÷6=165,S2新=,平均数不变,方差变小,故选C.2、C【分析】根据实际每天生产零件的数量是原计划的2倍,可以提前5天完成任务可以列出相应的分式方程,本题得以解决.【题目详解】由题意可得,,故选C.【题目点拨】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.3、D【分析】根据轴对称图形的概念求解即可.【题目详解】解:根据轴对称图形的概念可知“由”是轴对称图形,故选:D.【题目点拨】本题考查轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.4、C【解题分析】解:∵=5,而5的算术平方根即,∴的算术平方根是故选C.5、D【分析】分别根据负整数指数幂的运算法则,积的乘方运算法则,同底数幂的除法法则以及任何非零数的零次幂等于1对各个选项逐一判断即可.【题目详解】A.(﹣1)﹣3=﹣1,故本选项不合题意;B.(﹣2)3×(﹣2)3=[(﹣2)×(﹣2)]3=(22)3=26,故本选项不合题意;C.(﹣5)4÷(﹣5)4=1,故本选项不合题意;D.(﹣4)0=1,正确,故本选项符合题意.故选:D.【题目点拨】本题主要考查了同底数幂的除法,负整数指数幂,幂的乘方与积的乘方以及零指数幂,熟记幂的运算法则是解答本题的关键.6、C【分析】首先提取公因式2a,进而利用完全平方公式分解因式即可.【题目详解】解:8a3﹣8a2+2a=2a(4a2﹣4a+1)=2a(2a﹣1)2,故选C.【题目点拨】本题因式分解中提公因式法与公式法的综合运用.7、D【分析】先交换原命题的题设和结论部分,得到四个命题的逆命题,然后再分别判断它们是真命题还是假命题.【题目详解】解:A.“对顶角相等”的逆命题是“相等的角是对顶角”,因为相等的角有很多种,不一定是对顶角,所以逆命题错误,故逆命题是假命题;B.“若,则”的逆命题是“若,则”错误,因为由可得,故逆命题是假命题;C.“相等的角是同位角”的逆命题是“同位角是相等的角”.因为缺少了两直线平行的条件,所以逆命题错误,故逆命题是假命题;D.“若,则”的逆命题是“若,则”正确,故逆命题是真命题;故选:D.【题目点拨】本题主要考查了逆命题和真假命题的定义,对事物做出判断的语句叫做命题,正确的命题叫做真命题,错误的命题叫做假命题.8、C【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【题目详解】解:如图C、能沿一条直线对折后两部分能完全重合,所以是轴对称图形;A、B、D选项中的图形,沿一条直线对折后两部分不能完全重合,所以不是轴对称图形;故选:C.【题目点拨】掌握轴对称图形的意义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.9、C【题目详解】、、+分母中均不含有字母,因此它们是整式,而不是分式,、、9x+分母中含有字母,因此是分式.故选C10、C【解题分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形判定即可.【题目详解】解:A、22+32≠42,故不能构成直角三角形;B、42+52≠62,故不能构成直角三角形;C、52+122=132,故能构成直角三角形;D、52+62≠72,故不能构成直角三角形.故选C.【题目点拨】本题考查勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.11、D【解题分析】分析:本题利用绝对值的化简和二次根式的化简得出即可.解析:∵x<2,∴+|3﹣x|=.故选D.12、B【解题分析】根据平行线的判定,绝对值和全等三角形的性质判断即可.【题目详解】A.同旁内角互补,两直线平行,是真命题;B.若两个数的绝对值相等,则这两个数相等或互为相反数,是假命题;C.平行于同一条直线的两条直线也互相平行,是真命题;D.全等三角形的周长相等,是真命题.故选B.【题目点拨】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.二、填空题(每题4分,共24分)13、360°【分析】根据多边形的外角和是360°即可求出答案.【题目详解】∵任意多边形的外角和都是360°,∴正十边形的外交和是360°,故答案为:360°.【题目点拨】此题考查多边形的外角和定理,熟记定理是解题的关键.14、【分析】先作出点B关于x轴的对称点,连接交x轴于点C,再用待定系数法求出直线的解析式,进而求出点C的坐标即可.【题目详解】先作出点B关于x轴的对称点,连接交x轴于点C,则点的坐标为由两点之间线段最短可知,的长即为的长,因为AB是定值,所以此时△ABC的周长最小设直线的解析式为将代入解析式得解得∴直线的解析式为当时,,解得∴点故答案为:.【题目点拨】本题主要考查周长的最小值,能够作出点B的对称点,掌握待定系数法是解题的关键.15、【分析】分别计算零指数幂和负指数幂,然后把结果相加即可.【题目详解】解:==.故答案为:.【题目点拨】本题考查零指数幂和负指数幂.理解任意非零数的零指数幂都等于0和灵活运用负指数幂的计算公式是解题关键.16、2秒或3.5秒【分析】由AD∥BC,则PD=QE时,以点P,Q,E,D为顶点的四边形是平行四边形,①当Q运动到E和C之间时,设运动时间为t,则得:9-3t=5-t,解方程即可;②当Q运动到E和B之间时,设运动时间为t,则得:3t-9=5-t,解方程即可.【题目详解】∵E是BC的中点,∴BE=CE=BC=9,∵AD∥BC,∴PD=QE时,以点P,Q,E,D为顶点的四边形是平行四边形,①当Q运动到E和C之间时,设运动时间为t,则得:9−3t=5−t,解得:t=2,②当Q运动到E和B之间时,设运动时间为t,则得:3t−9=5−t,解得:t=3.5;∴当运动时间t为2秒或3.5秒时,以点P,Q,E,D为顶点的四边形是平行四边形.故答案为:2秒或3.5秒.【题目点拨】本题是动点问题与图形的结合,分情况讨论,根据平行四边形的性质,列出关系式即可求解.17、(4,-5)【分析】利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P'的坐标是(x,﹣y),进而得出答案.【题目详解】点P(4,5)关于x轴对称点的坐标是:(4,﹣5).故答案为:(4,﹣5).【题目点拨】本题考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解答本题的关键.18、1.1【分析】根据等腰三角形三线合一的性质可得AD⊥BC,∠BAD=∠CAD,再求出∠DAE=∠EAB=30°,然后根据平行线的性质求出∠F=∠BAE=30°,从而得到∠DAE=∠F,再根据等角对等边求出AD=DF,然后求出∠B=30°,根据直角三角形30°角所对的直角边等于斜边的一半解答.【题目详解】解:∵AB=AC,AD是△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=∠BAC=×120°=60°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=∠BAD=×60°=30°,∵DF∥AB,∴∠F=∠BAE=30°,∴∠DAE=∠F=30°,∴AD=DF,∵∠B=90°﹣60°=30°,∴AD=AB=×11=1.1,∴DF=1.1.故答案为1.1.考点:等腰三角形的判定与性质;含30度角的直角三角形.三、解答题(共78分)19、(1);(2).【分析】(1)利用加减消元法解方程组即可(2)利用绝对值和算数平方根的非负性,得出关于x、y的方程组,解出x、y的值代入xy中,再求其平方根即可【题目详解】(1),①+②×3得:13x=26,解得:x=2,把x=2代入②得:y=4,则方程组的解为;(2)∵|x+y﹣6|0,∴,解得:,则±±±2.【题目点拨】本题考查了解二元一次方程组、绝对值和算数平方根的非负性,以及平方根的性质,熟练掌握相关知识是解题的关键20、(1)或;(2).【分析】(1)方程两边同时除以5,再利用平方根的定义即可(2)利用立方根的定义解方程即可【题目详解】(1)解:或(2)解:【题目点拨】本题主要考查了平方根与立方根的定义,熟记定义是解答本题的关键.21、(1)236,2;(2)见解析.【分析】(1)按照定义求解即可;(2)设A的十位数字是a,个位数字是b,表示出至善数和明德数,作差即可证明.【题目详解】(1)26的至善数是中间加3,故为236,明德数是加3,故为2.故答案为:236,2;(2)设A的十位数字是a,个位数字是b,则它的至善数是100a+30+b,明德数是10a+b+3.∵100a+30+b﹣(10a+b+3)=90a+43=43(2a+1)∴“至善数”与“明德数”之差能被43整除.【题目点拨】本题考查了因式分解的应用,理解“明德数”、“至善数”的定义是解答本题的关键.22、(1)3x;(2);(3)(4).【分析】(1)根据分式乘法法则计算即可;

(2)根据平方差公式展开,合并同类项即可;(3)根据完全平方公式和单项式乘多项式展开,合并同类项即可;(4)提公因式后,再利用平方差公式继续分解即可.【题目详解】(1);(2);(3);(4).【题目点拨】本题考查了分式的乘法,整式的混合运算,因式分解,熟记完全平方公式、平方差公式并灵活运用是解题的关键.23、(1)1辆甲种客车的租金是400元,1辆乙种客车的租金是280元;(2)1.【分析】(1)可设1辆甲种客车的租金是x元,1辆乙种客车的租金是y元,根据等量关系:①1辆甲种客车和3辆乙种客车共需租金1240元,②3辆甲种客车和2辆乙种客车共需租金1760元,列出方程组求解即可;(2)由于求最节省的租车费用,可知租用甲种客车6辆,租用乙客车2辆,进而求解即可.【题目详解】解:(1)设1辆甲种客车的租金是x元,1辆乙种客车的租金是y元,依题意有:,解得:答:1辆甲种客车的租金是400元,1辆乙种客车的租金是280元;(2)租用甲种客车6辆,租用乙客车2辆是最节省的租车费用,400×6+280×2=2400+560=1(元).答:最节省的租车费用是1元.【题目点拨】本题考查一元一次不等式的应用;二元一次方程组的应用;最值问题.24、(1)40;9;(2)见详解;(3)3.1【分析】(1)根据线段垂直平分线的性质得到AM=BM,NA=NC,根据等腰三角形的性质得到BAM=∠B,∠NAC=∠C,结合图形计算即可;(2)连接AM、AN,仿照(1)的作法得到∠MAN=90°,根据勾股定理证明结论;(3)连接AP、CP,过点P作PE⊥BC于点E,根据线段垂直平分线的性质得到AP=CP,根据角平分线的性质得到PH=PE,证明Rt△APH≌Rt△CPE得到AH=CE,证明△BPH≌△BPE,得到BH=BE,结合图形计算即可.【题目详解】解:(1)∵∠BAC=110°,∴∠B+∠C=180°﹣110°=70°,∵AB边的垂直平分线交BC边于点M,∴AM=BM,∴∠BAM=∠B,同理:NA=NC,∴∠NAC=∠C,∴∠MAN=110°﹣(∠BAM+∠NAC)=40°,∵△AMN的周长为9,∴MA+MN+NA=9,∴BC=MB+MN+NC=MA+MN+NA=9,故答案为:40;9;(2)如图②,连接AM、AN,∵∠BAC=131°,∴∠B+∠C=41°,∵点M在AB的垂直平分线上,∴AM=BM,∴∠BAM=∠B,同理AN=CN,∠CAN=∠C,∴∠BAM+∠CAN=41°,∴∠MAN=∠BAC﹣(∠BAM+∠CAN)=90°,∴AM2+AN2=MN2,∴BM2+CN2=MN2;(3)如图③,连接AP、CP,过点P作PE⊥BC于点E,∵BP平分∠ABC,PH⊥BA,PE⊥BC,∴PH=PE,∵点P在AC的垂直平分线上,∴AP=CP,在Rt△APH和Rt△CPE中,,∴Rt△APH≌Rt△CPE(HL),∴AH=CE,在△BPH和△BPE中,,∴△BPH≌△BPE(AAS)∴BH=BE,∴BC=BE+CE=BH+CE=AB+2AH,∴AH=(BC﹣AB)÷2=3.1.【题目点拨】本题考查的是全等三角形的判定和性质、勾股定理、线段垂直平分线的性质、角平分线的性质、三角形内角和定理,掌握全等三角形的判定定理和性质定理是解题的关键.25、(1);(2);(3)或;(4)t最小值为秒【分析】(1)把B(2,m)代入直线l解析式可求出m的值,即可得B点坐标,设直线BC的解析式为y=kx+b,把B、C两点坐标代入可求得k、m的值,即可的直线BC的解析式;(2)过点O作交BC于点D,可知S△ABC=S△ABD,,联立直线BC与OD的解析式解得交点D的坐标即可;(3)分别讨论P点在y轴的负半轴和正半轴时两种情况,①P点在y轴的负半轴时,作于点N,可证明△AOP△PNM1,设OP=NM1=m,ON=m-2,则M1的坐标为(m,2-m),代入BC解析式即可求出m的值,进而可得M1坐标;②当P点在y轴正半轴时,同①解法可求出M2的坐标,综上即可得答案;(4)作射线AQ与x轴正半轴的夹角为45°,过点B作x轴的垂线交射线AQ于点Q,作于点K,作于点T,可求出AG、AQ、BQ的长,根据时间t=+=BE+EK≥BT,利用面积法求出BT的值即可.【题目详解】(1)解:将点B(2,m)代入得m=3∴设直线BC解析式为得到∴∴直线BC解析式为(2)如图,过点O作交BC于点D∴S△ABC=S△ABD,∴直线OD的解析式为y=x,∴解得(3)①如图,当P点在y轴负半轴时,作于点N,∵直线AB与x轴相交于点A,∴点A坐

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论