版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
吉林省长春市东北师大附中新城学校2024届八年级数学第一学期期末学业质量监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.一个多边形的内角和是720°,则这个多边形的边数是()A.8 B.9 C.6 D.112.2017年12月15日,北京2022年冬奥会会徽“冬梦”正式发布.以下是参选的会徽设计的一部分图形,其中是轴对称图形的是()A. B. C. D.3.如图,数轴上的A、B、C、D四点中,与数﹣表示的点最接近的是()A.点A B.点B C.点C D.点D4.点P(–2,4)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.如图所示,△ABC的顶点A、B、C在边长为1的正方形网格的格点上,于点D,则BD的长为A.3 B. C.4 D.6.已知直角三角形的两条边长分别是3和5,那么这个三角形的第三条边的长()A.4 B.16 C. D.4或7.当x=()时,互为相反数.A. B. C. D.8.如图,把一张长方形纸片沿对角线折叠,点的对应点为,与相交于点,则下列结论不一定成立的是()A.是等腰三角形 B.C.平分 D.折叠后的图形是轴对称图形9.如图,在中,已知点D,E,F分别为BC,AD,CE的中点,且,则的面积是()A.3 B.4 C.5 D.610.的计算结果是()A. B. C.0 D.1二、填空题(每小题3分,共24分)11.比较大小:58_____5-12.12.直线y=1x﹣1沿y轴向上平移1个单位,再沿x轴向左平移_____个单位得到直线y=1x+1.13.一粒大米的质量约为0.000021千克,将0.000021这个数用科学记数法表示为____________14.已知等腰三角形的两边长满足方程组,则此等腰三角形的周长为_____.15.如图,矩形在平面直角坐标系内,其中点,点,点和点分别位于线段,上,将沿对折,恰好能使点与点重合.若轴上有一点,能使为等腰三角形,则点的坐标为___________.16.在平面直角坐标系中,点P(a-1,a)是第二象限内的点,则a的取值范围是__________。17.已知△ABC中,D、E分别是AB、AC边上的中点,且DE=3cm,则BC=___________cm.18.一个n边形的内角和为1080°,则n=________.三、解答题(共66分)19.(10分)仔细阅读下面例题,解答问题:例题:已知二次三项式有一个因式是,求另一个因式以及m的值.解:设另一个因式为,得则.解得:,另一个因式为,m的值为问题:仿照以上方法解答下面问题:已知二次三项式有一个因式是,求另一个因式以及k的值.20.(6分)已知一次函数的图象经过点,并且与轴相交于点,直线与轴相交于点,点恰与点关于轴对称,求这个一次函数的表达式.21.(6分)如图,在平面直角坐标系中,点A的坐标(2,0),点C是y轴上的动点,当点C在y轴上移动时,始终保持是等边三角形(点A、C、P按逆时针方向排列);当点C移动到O点时,得到等边三角形AOB(此时点P与点B重合).〖初步探究〗(1)点B的坐标为;(2)点C在y轴上移动过程中,当等边三角形ACP的顶点P在第二象限时,连接BP,求证:;〖深入探究〗(3)当点C在y轴上移动时,点P也随之运动,探究点P在怎样的图形上运动,请直接写出结论,并求出这个图形所对应的函数表达式;〖拓展应用〗(4)点C在y轴上移动过程中,当OP=OB时,点C的坐标为.22.(8分)解方程(1)(2)23.(8分)一次函数的图象过M(6,﹣1),N(﹣4,9)两点.(1)求函数的表达式.(2)当y<1时,求自变量x的取值范围.24.(8分)甲、乙两个工程队计划修建一条长15千米的乡村公路,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过5.2万元,甲工程队至少修路多少天?25.(10分)如图,在四边形中,,为的中点,连接,且平分,延长交的延长线于点.(1)求证:;(2)求证:;(3)求证:是的平分线;(4)探究和的面积间的数量关系,并写出探究过程.26.(10分)根据以下10个乘积,回答问题:11×29;12×28;13×27;14×26;15×25;16×24;17×23;18×22;19×21;1×1.(1)将以上各乘积分别写成“a2﹣b2”(两数平方)的形式,将以上10个乘积按照从小到大的顺序排列起来;(2)用含有a,b的式子表示(1)中的一个一般性的结论(不要求证明);(3)根据(2)中的一般性的结论回答下面问题:某种产品的原料提价,因而厂家决定对产品进行提价,现有两种方案方案:第一次提价p%,第二次提价q%;方案2:第一、二次提价均为%,其中p≠q,比较哪种方案提价最多?
参考答案一、选择题(每小题3分,共30分)1、C【分析】根据多边形内角和公式可直接进行求解.【题目详解】解:由题意得:,解得:;故选C.【题目点拨】本题主要考查多边形内角和,熟记多边形内角和公式是解题的关键.2、B【分析】根据轴对称图形的概念求解即可.【题目详解】A.不是轴对称图形,本选项错误;B.是轴对称图形,本选项正确;C.不是轴对称图形,本选项错误;D.不是轴对称图形,本选项错误.故选B.【题目点拨】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3、B【分析】,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.【题目详解】,,,,因为0.268<0.732<1.268,所以表示的点与点B最接近,故选B.4、B【分析】根据各象限中点的坐标特征进行判断即可.【题目详解】第二象限中的点的横坐标为负数,纵坐标为正数.故选B.5、A【解题分析】根据图形和三角形的面积公式求出△ABC的面积,根据勾股定理求出AC,根据三角形的面积公式计算即可.【题目详解】解:过点A作AE⊥BC于点E,△ABC的面积=×BC×AE=,
由勾股定理得,AC==5,则×5×BD=,
解得BD=3,故选:A.【题目点拨】本题考查勾股定理的应用,掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解题的关键.6、D【解题分析】试题解析:当3和5都是直角边时,第三边长为:=;当5是斜边长时,第三边长为:=1.故选D.7、B【分析】根据相反数的定义列出方程求解即可.【题目详解】由题意得:解得经检验,是原分式方程的解.故选B.【题目点拨】本题目是一道考查相反数定义问题,根据相反数的性质:互为相反数的两个数相加得0.从而列方程,解方程即可.8、C【分析】由折叠前后的两个图形全等可以得出∠FBD=∠DBC,由长方形的性质可以得出AD∥BC,所以∠FDB=∠FBD=∠DBC,故得出是等腰三角形,根据折叠的性质可证的,折叠前后的两个图形是轴对称图形.【题目详解】解:∵∴∠FBD=∠DBC∵AD∥BC∴∠FDB=∠FBD=∠DBC∴是等腰三角形∴A选项正确;∵∴AB=ED在△AFB和△FED中∴∴B选项正确;折叠前后的图形是轴对称图形,对称轴为BD∴D选项正确;故选:C.【题目点拨】本题主要考查的是折叠前后的图形是轴对称图形并且全等,根据全等三角形的性质是解此题的关键.9、B【分析】因为点F是CE的中点,所以△BEF的底是△BEC的底的一半,△BEF高等于△BEC的高;同理,D、E、分别是BC、AD的中点,可得△EBC的面积是△ABC面积的一半;利用三角形的等积变换可解答.【题目详解】点F是CE的中点,△BEF的底是EF,△BEC的底是EC,即EF=EC,而高相等,E是AD的中点,,E是AD的中点,,,且=16=4故选B.【题目点拨】本题主要考察三角形的面积,解题关键是证明得出.10、D【解题分析】根据非零数的零次幂等于1解答即可.【题目详解】=1.故选D.【题目点拨】本题考查了零次幂的意义,熟练掌握非零数的零次幂等于1是解答本题的关键.二、填空题(每小题3分,共24分)11、>【解题分析】利用作差法即可比较出大小.【题目详解】解:∵58∴58>5故答案为>.12、2【分析】根据直线平移的规律:“左加右减,上加下减”,即可得到答案.【题目详解】直线y=2x﹣2沿y轴向上平移2个单位得到直线:y=2x﹣2+2=2x,再沿x轴向左平移2个单位得到直线y=2(x+2),即y=2x+2.故答案为:2.【题目点拨】本题主要考查直线的平移规律,掌握“左加右减,上加下减”的平移规律,是解题的关键.13、【解题分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数,0.000021=2.1×10-5,故答案为2.1×10-5.14、10【分析】首先解二元一次方程组求出x和y的值,然后分类讨论即可求出等腰三角形的周长.【题目详解】解:x,y满足方程组解得:,当2是腰是无法构成三角形,当4是腰是,三角形三边是4,4,2,此时三角形的周长是4+4+2=10,故答案是:10【题目点拨】本题主要考查了等腰三角形的性质、解二元一次方程组以及三角形三边关系,解题的关键是求出x和y的值,此题难度不大.15、或【分析】首先根据矩形和对折的性质得出AC、AB、BC、AD,然后利用△ADE∽△ABC,得出AE,分类讨论即可得出点P坐标.【题目详解】∵矩形,,∴OA=BC=2,OC=AB=4∴由对折的性质,得△ADE是直角三角形,AD=CD=AC=,∠ADE=∠ABC=90°,∠DAE=∠BAC∴△ADE∽△ABC∴,即∴∵轴上有一点,使为等腰三角形,当点P在点A左侧时,如图所示:∴∴点P坐标为;当点P在点A右侧时,如图所示:∴∴点P坐标为;综上,点P的坐标是或故答案为:或.【题目点拨】此题主要考查利用相似三角形、等腰三角形的性质求点坐标,解题关键是求出AE的长度.16、0<a<1【解题分析】已知点P(a-1,a)是第二象限内的点,即可得到横纵坐标的符号,即可求解.【题目详解】∵点P(a-1,a)是第二象限内的点,∴a-1<0且a>0,解得:0<a<1.故答案为:0<a<1.【题目点拨】本题主要考查了平面直角坐标系中第二象限的点的坐标的符号特点,第二象限(-,+).17、6【解题分析】根据三角形的中位线性质可得,18、1【分析】直接根据内角和公式计算即可求解.【题目详解】(n﹣2)•110°=1010°,解得n=1.故答案为1.【题目点拨】主要考查了多边形的内角和公式.多边形内角和公式:.三、解答题(共66分)19、20.【解题分析】根据例题中的已知的两个式子的关系,二次三项式的二次项系数是1,因式是的一次项系数也是1,利用待定系数法求出另一个因式所求的式子的二次项系数是2,因式是的一次项系数是2,则另一个因式的一次项系数一定是1,利用待定系数法,就可以求出另一个因式.【题目详解】解:设另一个因式为,得则解得:,故另一个因式为,k的值为【题目点拨】正确读懂例题,理解如何利用待定系数法求解是解本题的关键.20、y=-4x-1.【分析】先求出点Q的坐标,继而根据关于x轴对称的点的坐标特征求出点P的坐标,然后将(-2,5),点P坐标代入解析式利用待定系数法进行求解即可.【题目详解】∵直线与轴相交于点,当x=0时,y=-x+1=1,∴Q(0,1),∵点恰与点关于轴对称,∴P(0,-1),将(-2,5)、(0,-1)分别代入y=kx+b,得,解得:,所以一次函数解析式为:y=-4x-1.【题目点拨】本题考查了待定系数法求一次函数解析式,求出点P的坐标是解题的关键.21、(1);(2)证明见解析;(3)点P在过点B且与AB垂直的直线上,;(4).【分析】(1)作BD⊥x轴,与x轴交于D,利用等边三角形的性质和勾股定理即可解得;(2)根据等边三角形的性质可得两组对应边相等,再结合角的和差可得∠BAP=∠OAC,再利用SAS可证得全等;(3)由(2)可知PB⊥AB,由此可得P的运动轨迹,再求得AB的解析式,根据垂直的两条直线的一次项系数互为负倒数设BP的解析式,将B点坐标代入即可求得解析式;(4)利用两点之间距离公式求得P点坐标,再利用勾股定理求得BP,结合(2)可知OC=BP,由此可得C点坐标.【题目详解】解:(1)∵A(0,2),∴OA=2,过点B作BD⊥x轴,∵△OAB为等边三角形,OA=2,∴OB=OA=2,OD=1,∴即,故答案为:;(2)证明:∵△OAB和ACP为等边三角形,∴AC=AP,AB=OA,∠CAP=∠OAB=60°,∴∠BAP=∠OAC,∴(SAS);(3)如上图,∵,∴∠ABP=∠AOC=90°,∴点P在过点B且与AB垂直的直线上.设直线AB的解析式为:,则,解得:,∴,∴设直线BP的解析式为:,则,解得,故;(4)设,∵OP=OB,∴,解得:,(舍去),故此时,,∵点A、C、P按逆时针方向排列,∴,故答案为:.【题目点拨】本题考查求一次函数解析式,勾股定理,全等三角形的性质和判定,等边三角形的性质.解题的关键是正确寻找全等三角形解决问题.22、(1)原分式方程的解为;(2)原分式方程的解为.【分析】(1)、(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;【题目详解】(1)解:两边同乘,得解得检验:当时,所以,原分式方程的解为(2)解:两边同乘,得解得检验:当时,所以,原分式方程的解为.【题目点拨】本题考查了解分式方程,注意要检验方程的根.23、(1)y=﹣x+2;(2)当y<1时,x>1.【分析】(1)采用待定系数法,求解即可;(2)根据函数的增减性,即可得解.【题目详解】(1)设一次函数的解析式为y=kx+b将M(6,﹣1),N(﹣1,9)代入得:解得∴函数的表达式y=﹣x+2.(2)∵k=﹣1<0∴一次函数y=﹣x+2的函数值随着x的增大而变小∵当y=1时,1=﹣x+2∴x=1∴当y<1时,x>1.【题目点拨】此题主要考查一次函数解析式以及自变量范围的求解,熟练掌握,即可解题.24、(1)甲每天修路1.5千米,则乙每天修路1千米;(2)甲工程队至少修路8天.【分析】(1)可设甲每天修路x千米,则乙每天修路(x﹣0.5)千米,则可表示出修路所用的时间,可列分式方程,求解即可;(2)设甲修路a天,则可表示出乙修路的天数,从而可表示出两个工程队修路的总费用,由题意可列不等式,求解即可.【题目详解】(1)设甲每天修路x千米,则乙每天修路(x﹣0.5)千米,根据题意,可列方程:,解得x=1.5,经检验x=1.5是原方程的解,且x﹣0.5=1,答:甲每天修路1.5千米,则乙每天修路1千米;(2)设甲修路a天,则乙需要修(15﹣1.5a)千米,∴乙需要修路(天),由题意可得0.5a+0.4(15﹣1.5a)≤5.2,解得a≥8,答:甲工程队至少修路8天.考点:1.分式方程的应用;2.一元一次不等式的应用.25、(1)详见解析;(2)详见解析;(3)详见解析;(4);详见解析【分析】(1)根据AAS证明,再由全等三角形的性质得到结论;(2)先证明得到△ABF是等腰三角形,从而证明,再根据得到结论;(3)先证明AE=EF,再结合△ABF是等腰三角形,根据三线合一得到结论;(4)根据三线合一可得S△ABE=S△BEF,再根据S△BEF=S△BCE+S△CEF和得到结论.【题目详解】(1)证明:∵,∴,,∵为的中点,∴,在和中,∴,∴;(2)证明:∵平分,∴,由(1)知,∴,∴△ABF是等腰三角形,∴由(1)知,∴;(3)证明:由(1)知,∴,由(2)知,∴是等腰底边上的中线,∴是的平分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 护理实习就业协议书参考
- 招生加盟合同样本
- 江西省上饶市玉山县樟村中学2018-2019学年七年级上学期期中考试道德与法治试题(解析版)
- 医疗事故协议书2024年
- 简历制作指导协议
- 存量房买卖合同范本
- 房屋场地租赁协议
- 建筑工地土石方工程劳动合同
- 工程合同违约责任与赔偿
- 新版弱电监控施工合同范本
- 快乐课间,我做主PPT通用课件
- 特殊教育语文教案(太阳)
- SAP增强实现批次自动编号
- 微积分方法建模12传染病模型数学建模案例分析
- 卫浴产品世界各国认证介绍
- 江苏省职工代表大会操作办法.doc
- 湘教版小学音乐五年级上册教学计划
- sch壁厚等级对照表
- 高新技术企业认定自我评价表
- 药物分类目录
- 中石油-细节管理手册 03
评论
0/150
提交评论