河南省叶县2024届数学八上期末联考模拟试题含解析_第1页
河南省叶县2024届数学八上期末联考模拟试题含解析_第2页
河南省叶县2024届数学八上期末联考模拟试题含解析_第3页
河南省叶县2024届数学八上期末联考模拟试题含解析_第4页
河南省叶县2024届数学八上期末联考模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南省叶县2024届数学八上期末联考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图,下列条件中,不能证明≌的条件是()A.ABDC,ACDB B.ABDC,C.ABDC, D.,2.张师傅驾车从甲地到乙地匀速行驶,行驶中油箱剩余油量(升)与行驶时间(小时)之间的关系式为,这里的常数“”,“”表示的实际意义分别是()A.“”表示每小时耗油升,“”表示到达乙地时油箱剩余油升B.“”表示每小时耗油升,“”表示出发时油箱原有油升C.“”表示每小时耗油升,“”表示每小时行驶千米D.“”表示每小时行驶千米,“”表示甲乙两地的距离为千米3.如图,在平面直角坐标系中,直线l1:与直线l2:交于点A(,b),则关于x、y的方程组的解为()A. B. C. D.4.如图,在△ABC中,AB=AC,∠BAC=100°,AB的垂直平分线DE分别交AB、BC于点D、E,则∠BAE=()A.80° B.60° C.50° D.40°5.中国文字博大精深,而且有许多是轴对称图形,在这四个文字中,不是轴对称图形的是()A. B. C. D.6.化简的结果为()A.﹣1 B.1 C. D.7.以下列各组线段为边,能构成直角三角形的是()A.8cm,9cm,10cm B.cm,cm,cmC.1cm,2cm,cm D.6cm,7cm,8cm8.以下列各组线段为边,能组成三角形的是()A.2cm、2cm、4cm B.2cm、6cm、3cmC.8cm、6cm、3cm D.11cm、4cm、6cm9.下列各组数据分别是三角形的三边长,其中不能构成直角三角形的是()A. B.C. D.10.对于一次函数,下列说法正确的是()A.它的图象经过点 B.它的图象与直线平行C.随的增大而增大 D.当时,随的增大而减小二、填空题(每小题3分,共24分)11.如图,在中,,的外角平分线相交于点,若,则________度.12.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上一个动点,若PA=3,则PQ的最小值为_____.13.如图,在中,和的平分线交于点,得;和的平分线交于点,得;…;和的平分线交于点,得,则与的关系是______.14.如图,在中,,,的垂直平分线交于,交于,且,则的长为_______.15.已知函数y=-x+m与y=mx-4的图象交点在y轴的负半轴上,那么,m的值为____.16.分解因式:a2b2﹣5ab3=_____.17.如图,OP=1,过P作PP1⊥OP且PP1=1,得OP1=;再过P1作P1P2⊥OP1且P1P2=1,得OP2=;又过P2作P2P3⊥OP2且P2P3=1,得OP3=2;…依此法继续作下去,得OP2017=_______.18.20192﹣2020×2018=_____.三、解答题(共66分)19.(10分)如图,一个直角三角形纸片的顶点A在∠MON的边OM上移动,移动过程中始终保持AB⊥ON于点B,AC⊥OM于点A.∠MON的角平分线OP分别交AB、AC于D、E两点.(1)点A在移动的过程中,线段AD和AE有怎样的数量关系,并说明理由.(2)点A在移动的过程中,若射线ON上始终存在一点F与点A关于OP所在的直线对称,猜想线段DF和AE有怎样的关系,并说明理由.(3)若∠MON=45°,猜想线段AC、AD、OC之间有怎样的数量关系,并证明你的猜想.20.(6分)水龙头关闭不紧会造成滴水,小明用可以显示水量的容器做图①所示的试验,并根据试验数据绘制出图②所示的容器内盛水量W(L)与滴水时间t(h)的函数关系图象,请结合图象解答下列问题:(1)容器内原有水多少?(2)求W与t之间的函数关系式,并计算在这种滴水状态下一天的滴水量是多少升?图①图②21.(6分)在杭州西湖风景游船处,如图,在离水面高度为5m的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13m,此人以0.5m/s的速度收绳.10s后船移动到点D的位置,问船向岸边移动了多少m?(假设绳子是直的,结果保留根号)22.(8分)在平面直角坐标系中,一次函数y=kx+b(k,b都是常数,且k≠0)的图象经过点(1,0)和(0,2).(1)当﹣2<x≤3时,求y的取值范围;(2)已知点P(m,n)在该函数的图象上,且m﹣n=4,求点P的坐标.23.(8分)如图①,将一个长方形沿着对角线剪开即可得到两个全等的三角形,再把△ABC沿着AC方向平移,得到图②中的△GBH,BG交AC于点E,GH交CD于点F.在图②中,除△ACD与△HGB全等外,你还可以指出哪几对全等的三角形(不能添加辅助线和字母)?请选择其中一对加以证明.24.(8分)已知,如图,EF⊥AC于F,DB⊥AC于M,∠1=∠2,∠3=∠C,求证:AB∥MN.25.(10分)如图,函数的图像分别与x轴、y轴交于A、B两点,点C在y轴上,AC平分.(1)求点A、B的坐标;(2)求的面积;(3)点P在坐标平面内,且以A、B、P为顶点的三角形是等腰直角三角形,请你直接写出点P的坐标.26.(10分)定义:在平面直角坐标系中,对于任意两点A(a,b),B(c,d),若点T(x,y)满足x=,y=,那么称点T是点A和B的融合点.例如:M(﹣1,8),N(4,﹣2),则点T(1,2)是点M和N的融合点.如图,已知点D(3,0),点E是直线y=x+2上任意一点,点T(x,y)是点D和E的融合点.(1)若点E的纵坐标是6,则点T的坐标为;(2)求点T(x,y)的纵坐标y与横坐标x的函数关系式:(3)若直线ET交x轴于点H,当△DTH为直角三角形时,求点E的坐标.

参考答案一、选择题(每小题3分,共30分)1、C【解题分析】根据全等三角形的判定:SSS、SAS、ASA、AAS,和直角三角形全等的判定“HL”,可知:由ABDC,ACDB,以及公共边,可由SSS判定全等;由ABDC,,以及公共边,可由SAS判定全等;由ABDC,,不能由SSA判定两三角形全等;由,,以及公共边,可由AAS判定全等.故选C.点睛:此题主要考查了三角形全等的判定,解题关键是合理利用全等三角形的判定:SSS、SAS、ASA、AAS,和直角三角形全等的判定“HL”,进行判断即可.2、B【分析】将一次函数与实际情况结合,能快速得出-6.5和23的实际意义.【题目详解】一次函数表示的是汽车行驶时间t与油箱中剩余油量的关系生活中,行驶时间越久,则剩余油量应该越少可知:-6.5表示每小时耗油6.5升,23表示出发时油箱剩余油23升故选:B.【题目点拨】本题考查一次函数的应用,解题关键是将函数解析式与事情情况对应起来.3、C【解题分析】试题解析:∵直线l1:y=x+3与直线l2:y=mx+n交于点A(-1,b),∴当x=-1时,b=-1+3=2,∴点A的坐标为(-1,2),∴关于x、y的方程组的解是.故选C.【题目点拨】本题考查了一次函数与二元一次方程组的知识,解题的关键是了解方程组的解与函数图象的交点坐标的关系.4、D【分析】首先利用三角形的内角和定理和等腰三角形的性质∠B,利用线段垂直平分线的性质易得AE=BE,∠BAE=∠B.【题目详解】解:∵AB=AC,∠BAC=100°,∴∠B=∠C=(180°﹣100°)÷2=40°,∵DE是AB的垂直平分线,∴AE=BE,∴∠BAE=∠B=40°,故选D.5、D【分析】如果一个图形沿着一条直线对折后两部分完全重合,那么这样的图形就叫做轴对称图形.【题目详解】A.是轴对称图形;B.是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选D.【题目点拨】本题考查的是轴对称图形,熟练掌握轴对称图形的概念是解题的关键.6、B【分析】先把分式进行通分,把异分母分式化为同分母分式,再把分子相加,即可求出答案.【题目详解】解:.故选B.7、C【解题分析】根据勾股定理的逆定理对四组数据进行逐一判断即可.【题目详解】A.∵82+92≠102,∴不能构成直角三角形;B.∵,∴不能构成直角三角形;C.∵,∴能构成直角三角形;D.∵62+72≠82,∴不能构成直角三角形.故选C.【题目点拨】本题考查了用勾股定理的逆定理判断三角形的形状,即只要三角形的三边满足a2+b2=c2,则此三角形是直角三角形.8、C【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边.【题目详解】A.∵2+2=4,∴2cm、2cm、4cm不能组成三角形,故不符合题意;B.∵2+3<6,∴2cm、6cm、3cm不能组成三角形,故不符合题意;C.∵3+6>8,∴8cm、6cm、3cm能组成三角形,故符合题意;D.∵4+6<11,∴11cm、4cm、6cm不能组成三角形,故不符合题意;故选C.【题目点拨】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.9、D【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.【题目详解】解:A、∵52+122=169=132,∴能构成直角三角形,故本选项错误;B、∵12+12=2=()2,∴能构成直角三角形,故本选项错误;C、∵12+22=5=()2,∴能够构成直角三角形,故本选项错误;D、∵()2+22=7≠()2,∴不能构成直角三角形,故本选项正确.故选D.【题目点拨】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.10、D【分析】根据一次函数图象上点的坐标特征、一次函数的性质判断即可.【题目详解】A、当时,,

∴点(1,-2)不在一次函数的图象上,A不符合题意;

B、∵,它的图象与直线不平行,B不符合题意;

C、∵<0,

∴y随x的增大而减小,C不符合题意;

D、∵<0,

∴y随x的增大而减小,D符合题意.

故选:D.【题目点拨】本题考查了一次函数图象上点的坐标特征、一次函数的性质以及一次函数图象与系数的关系,逐一分析四个选项的正误是解题的关键.二、填空题(每小题3分,共24分)11、【解题分析】根据三角形的内角和定理,得∠ACB+∠ABC=180°-74°=106°;再根据邻补角的定义,得两个角的邻补角的和是360°-106°=254°;再根据角平分线的定义,得∠OCB+∠OBC=127°;最后根据三角形的内角和定理,得∠O=53°.【题目详解】解:∵∠A=74°,∴∠ACB+∠ABC=180°-74°=106°,∴∠BOC=180°-(360°-106°)=180°-127°=53°.故答案为53【题目点拨】此题综合运用了三角形的内角和定理以及角平分线定义.注意此题中可以总结结论:三角形的相邻两个外角的角平分线所成的锐角等于90°减去第三个内角的一半,即∠BOC=90°-∠A.12、1【解题分析】试题分析:由垂线段最短可知,当PQ与OM垂直的时候,PQ的值最小,根据角平分线的性质可知,此时PA=PQ=1.故答案为1.考点:角平分线的性质;垂线段最短.13、或【分析】根据角平分线的性质和外角的性质,得到,同理可得,则,由此规律可得,然后得到答案.【题目详解】解:∵平分,平分,∴,,∵,∴,∴,即,同理可得:,……∴,……∴;当时,有或;故答案为:或.【题目点拨】本题考查了三角形的角平分线性质和外角性质,解题的关键是掌握角平分线的性质和外角的性质得到,从而找到规律进行求解.14、【分析】连接BE,由DE是AC的垂直平分线,可得∠DBE=∠A=30°,进而求得∠EBC=30°.根据含30度角的直角三角形的性质可得BE=2EC,AE=2EC,进而可以求得AE的长.【题目详解】连接BE,∵DE是AB的垂直平分线,∴AE=BE,∴∠A=∠ABE=30°,∵∠C=90°,∠A=30°,∴∠ABC=60°,∴BE是∠ABC的角平分线,∴DE=CE=5,在△ADE中,∠ADE=90°,∠A=30°,∴AE=2DE=1.故答案为:1cm.【题目点拨】此题主要考查线段的垂直平分线的性质和直角三角形的性质.熟练应用线段垂直平分线的性质是解题的关键.15、-1【分析】根据题意,第二个函数图象与y轴的交点坐标也是第一个函数图象与y轴的交点坐标,然后求出第二个函数图象与y轴的交点坐标,代入第一个函数解析式计算即可求解.【题目详解】当x=0时,y=m•0-1=-1,

∴两函数图象与y轴的交点坐标为(0,-1),

把点(0,-1)代入第一个函数解析式得,m=-1.

故答案为:-1.【题目点拨】此题考查两直线相交的问题,根据第二个函数解析式求出交点坐标是解题的关键,也是本题的突破口.16、ab2(a﹣5b).【分析】直接提取公因式ab2,进而得出答案.【题目详解】解:a2b2﹣5ab3=ab2(a﹣5b).故答案为:ab2(a﹣5b).【题目点拨】本题考查因式分解提公因式法,关键在于熟练掌握提公因式法.17、【题目详解】解:∵OP=1,OP1=,OP2=,OP3==2,∴OP4==,…,OP2017=.故答案为.【题目点拨】本题考查了勾股定理,读懂题目信息,理解定理并观察出被开方数比相应的序数大1是解题的关键.18、1【分析】先观察式子,将2020×2018变为(2019+1)×(2019-1),然后利用平方差公式计算即可.【题目详解】原式=20192﹣(2019+1)×(2019-1)=20192-(20192-1)=20192-20192+1=1故答案为:1.【题目点拨】本题考查了用平方差公式进行简便计算,熟悉公式特点是解题关键.三、解答题(共66分)19、(1)、AD=AE,理由见解析;(2)、AE=DF,AE∥DF;理由见解析;(3)、OC=AC+AD,理由见解析.【解题分析】试题分析:(1)、根据AB⊥ON,AC⊥OM得出∠OAB=∠ACB,根据角平分线得出∠AOP=∠COP,从而得出∠ADE=∠AED,得出答案;(2)、根据点F与点A关于OP所在的直线对称得出AD=FD,AE=EF,然后证明△ADE和△FED全等,从而得出答案;(3)、延长EA到G点,使AG=AE,根据角度之间的关系得出CG=OC,根据(1)的结论得出AD=AE,根据AD=AE=AG得出答案.试题解析:(1)、AD=AE∵AB⊥ON,AC⊥OM.∴∠OAB+∠BAC=90°,∠BAC+∠ACB=90°.∴∠OAB=∠ACB.∵OP平分∠MON,∴∠AOP=∠COP.∵∠ADE=∠AOP+∠OAB,∠AED=∠COP+∠ACB,∴∠ADE=∠AED.(2)、AE=DF,AE∥DF.∵点F与点A关于OP所在的直线对称,∴AD=FD,AE=EF,∵AD=AE,∴AD=FD=AE=EF,∵DE=DE,∴△ADE≌△FED,∴∠AED=∠FDE,AE=DF,∴AE∥DF.(3)、OC=AC+AD延长EA到G点,使AG=AE∵∠OAE=90°∴OA⊥GE,∴OG=OE,∴∠AOG=∠EOA∵∠AOC=45°,OP平分∠AOC∴∠AOE=22.5°∴∠AOG=22.5°,∠G=67.5°∴∠COG=∠G=67.5°∴CG=OC由(1)得AD=AE∵AD=AE=AG∴AC+AD=OC考点:(1)、角度的计算;(2)、等腰三角形的性质;(3)、直角三角形的性质20、(1)0.3L;(2)在这种滴水状态下一天的滴水量为9.6L.【分析】(1)根据点的实际意义可得;(2)设与之间的函数关系式为,待定系数法求解可得,计算出时的值,再减去容器内原有的水量即可.【题目详解】(1)由图象可知,容器内原有水0.3L.(2)由图象可知W与t之间的函数图象经过点(0,0.3),故设函数关系式为W=kt+0.3.又因为函数图象经过点(1.5,0.9),代入函数关系式,得1.5k+0.3=0.9,解得k=0.4.故W与t之间的函数关系式为W=0.4t+0.3.当t=24时,W=0.4×24+0.3=9.9(L),9.9-0.3=9.6(L),即在这种滴水状态下一天的滴水量为9.6L.【题目点拨】本题考查了一次函数的应用,关键是利用待定系数法正确求出一次函数的解析式.21、【分析】在Rt△ABC中,利用勾股定理计算出AB长,再根据题意可得CD长,然后再次利用勾股定理计算出AD长,再利用BD=AB-AD可得BD长.【题目详解】解:∵在Rt△ABC中,∠CAB=90°,BC=13m,AC=5m,∴AB==12(m),∵此人以0.5m/s的速度收绳,10s后船移动到点D的位置,∴CD=13﹣0.5×10=8(m),∴AD===(m),∴BD=AB−AD=(12−)(m)答:船向岸边移动了(12−)m.【题目点拨】本题考查勾股定理的应用,关键是掌握从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.22、(1)﹣4≤y<1;(2)点P的坐标为(2,﹣2).【分析】利用待定系数法求一次函数解析式得出即可;(1)利用一次函数增减性得出即可.(2)根据题意得出n=﹣2m+2,联立方程,解方程即可求得.【题目详解】设解析式为:y=kx+b,将(1,0),(0,2)代入得:,解得:,∴这个函数的解析式为:y=﹣2x+2;(1)把x=﹣2代入y=﹣2x+2得,y=1,把x=3代入y=﹣2x+2得,y=﹣4,∴y的取值范围是﹣4≤y<1.(2)∵点P(m,n)在该函数的图象上,∴n=﹣2m+2,∵m﹣n=4,∴m﹣(﹣2m+2)=4,解得m=2,n=﹣2,∴点P的坐标为(2,﹣2).考点:1、待定系数法求一次函数的解析式,2、一次函数图象上点的坐标特征,3、一次函数的性质23、△AGE≌△HCF,△EBC≌△FDG.【解题分析】分析:本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件求解.三角形全等条件中必须是三个元素,并且一定有一组对应边相等.详解:△AGE≌△HCF,△EBC≌△FDG.选择证明△AGE≌△HCF,过程如下:由平移可知AG=CH.∵△ACD与△HGB全等,∴∠A=∠H.又BG⊥AD,DC⊥BH,∴∠AGE=∠HCF=90°,∴△AGE≌△HCF(ASA).点睛:本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等.24、见解析【分析】由于EF⊥AC,DB⊥AC得到EF∥DM,进而可证∠1=∠CDM,根据平行线的判定得到MN∥CD,再由∠3=∠C,可证AB//CD,然后根据平行线的判定即可得到AB∥MN.【题目详解】证明:∵EF⊥AC,DB⊥AC,∴EF∥DM,∴∠2=∠CDM,∵∠1=∠2,∴∠1=∠CDM,∴MN∥CD,∵∠3=∠C,∴AB//CD,∴AB∥MN.【题目点拨】本题主要考查了平行线的性质与判定的综合应用,熟练掌握平行线的性质与判定方法是解答本题的关键.解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.25、(1)A(6,0),B(0,8);(2)15;(3)使△PAB为等腰直角三角形的P点坐标为(14,6)或(-2,-6)或(8,14)或(-8,2)或(-1,1)或(7,7).【分析】(1)在函数解析式中分别令y=0和x=0,解相应方程,可求得A、B的坐标;

(2)过C作CD⊥AB于点D,由勾股定理可求得AB,由角平分线的性质可得CO=CD,再根据S△AOB=S△AOC+S△ABC,可求得CO,则可求得△ABC的面积;

(3)可设P(x,y),则可分别表示出AP2、BP2,分∠PAB=90°、∠PBA=90°和∠APB=90°三种情况,分别可得到关于x、y的方程组,可求得P点坐标.【题目详解】解:(1)在中,令y=0可得0=-x+8,解得x=6,令x=0,解得y=8,

∴A(6,0),B(0,8);

(2)如图,过点C作CD⊥AB于点D,

∵AC平分∠OAB,

∴CD=OC,

由(1)可知OA=6,OB=8,

∴AB=10,

∵S△AOB=S△AOC+S△ABC,

∴×6×8=×6×OC+×10×OC,解得OC=3,

∴S△ABC=×10×3=15;

(3)设P(x,y),则AP2=(x-6)2+y2,BP2=x2+(y-8)2,且AB2=100,

∵△PAB为等腰直角三角形,

∴有∠PAB=90°、∠PBA=90°和∠APB=90°三种情况,

①当∠PAB=90°时,则有PA2=AB2且PA2+AB2=BP2,即,解得或,此时P点坐标为(14,6)或(-2,-6);

②∠PBA=90°时,有PB2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论