




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广东省东莞中学八年级数学第一学期期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.等腰三角形的一条边长为6,另一边长为13,则它的周长为()A.25 B.25或32 C.32 D.192.我国古代数学著作《增删算法统宗》记载”绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.“其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺,竿长y尺,则符合题意的方程组是()A. B. C. D.3.下列分解因式正确的是()A. B.C. D.4.如图,一次函数y=﹣2x+4的图象与x轴、y轴分别交于点A、B,点C是OA的中点,过点C作CD⊥OA于C交一次函数图象于点D,P是OB上一动点,则PC+PD的最小值为()A.4 B. C.2 D.2+25.如图是婴儿车的平面示意图,其中AB∥CD,∠1=120°,∠3=40°,那么∠2的度数为()A.80° B.90° C.100° D.102°6.对于,,,,,,其中分式有()A.个 B.个 C.个 D.个7.如图,在等腰中,顶角,平分底角交于点是延长线上一点,且,则的度数为()A.22° B.44° C.34° D.68°8.一个多边形截取一个角后,形成另一个多边形的内角和是1620°,则原来多边形的边数可能是()A.10,11,12 B.11,10C.8,9,10 D.9,109.下列坐标点在第四象限的是()A. B. C. D.10.下列命题中,真命题是()A.过一点且只有一条直线与已知直线平行B.两个锐角的和是钝角C.一个锐角的补角比它的余角大90°D.同旁内角相等,两直线平行二、填空题(每小题3分,共24分)11.已知m2﹣mn=2,mn﹣n2=5,则3m2+2mn﹣5n2=________.12.如图,等边的边垂直于轴,点在轴上已知点,则点的坐标为____.13.小华将升旗的绳子从旗杆的顶端拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆的处,发现此时绳子末端距离地面,则旗杆的高度为______.14.点A(,)在轴上,则点A的坐标为______.15.将一副三角板如图叠放,则图中∠α的度数为______.16.若正多边形的一个内角等于,则这个多边形的边数是__________.17.在二次根式中,x的取值范围是_________.18.若a2+b2=19,a+b=5,则ab=_____.三、解答题(共66分)19.(10分)先化简,再求值:其中x=.20.(6分)猜想与证明:小强想证明下面的问题:“有两个角(图中的和)相等的三角形是等腰三角形”.但他不小心将图弄脏了,只能看见图中的和边.(1)请问:他能够把图恢复成原来的样子吗?若能,请你帮他写出至少两种以上恢复的方法并在备用图上恢复原来的样子.(2)你能够证明这样的三角形是等腰三角形吗?(至少用两种方法证明)21.(6分)如图,直线分别与x轴,y轴相交于A,B两点,0为坐标原点,A点的坐标为(4,0)(1)求k的值;(2)过线段AB上一点P(不与端点重合)作x轴,y轴的垂线,乖足分别为M,N.当长方形PMON的周长是10时,求点P的坐标.22.(8分)在中,,,在内有一点,连接,,且.(1)如图1,求出的大小(用含的式子表示)(2)如图2,,,判断的形状并加以证明.23.(8分)已知:如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上的一点.求证:△ACE≌△BCD.24.(8分)生活经验表明,靠墙摆放梯子时,若梯子底端离墙的距离约为梯子长度的13,则梯子比较稳定,如图,AB为一长度为6(1)当梯子稳定摆放时,它的顶端能达到5.7米高的墙头吗?(2)如图2,若梯子底端向左滑动(32﹣2)米,那么梯子顶端将下滑多少米?25.(10分)4月23日是世界读书日,总书记说:“读书可以让人保持思维活力,让人得到智慧的启发,让人滋养浩然正气.”倡导读书活动,鼓励师生利用课余时间广泛阅读.期末,学校为了调查这学期学生课外阅读情况,随机抽样调查了.部分学生阅读课外书的本数,并将收集到的数据整理成如图的统计图.(1)这次共调查的学生人数是人,(2)所调查学生读书本数的众数是___本,中位数是__本(3)若该校有800名学生,请你估计该校学生这学期读书总数是多少本?26.(10分)综合与探究:如图1,一次函数的图象与x轴和y轴分别交于A,B两点,再将△AOB沿直线CD对折,使点A与点B重合.直线CD与x轴交于点C,与AB交于点D(1)求点A和点B的坐标(2)求线段OC的长度(3)如图2,直线l:y=mx+n,经过点A,且平行于直线CD,已知直线CD的函数关系式为,求m,n的值
参考答案一、选择题(每小题3分,共30分)1、C【解题分析】因为等腰三角形的两边分别为6和13,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【题目详解】解:当6为底时,其它两边都为13,6、13、13可以构成三角形,周长为32;当6为腰时,其它两边为6和13,6、6、13不可以构成三角形.故选C.【题目点拨】本题考查了等腰三角形的性质及三角形三边关系;对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.2、A【分析】设索长为x尺,竿子长为y尺,根据“索比竿子长一托,折回索子却量竿,却比竿子短一托”,即可得出关于x、y的二元一次方程组.【题目详解】解:设索长为x尺,竿子长为y尺,根据题意得:.故选:A.【题目点拨】本题考查二元一次方程组的实际应用,属于和差倍分问题,只需要找准数量间的关系,难度较小.3、C【解题分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【题目详解】A.,故A选项错误;B.,故B选项错误;C.,故C选项正确;D.=(x-2)2,故D选项错误,故选C.【题目点拨】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.4、C【分析】作点C关于y轴的对称点C′,连接C′D交y轴于点P,此时PC+PD取得最小值,利用一次函数图象上点的坐标特征可得出点A的坐标,由点C是OA的中点可得出点C的坐标,由点C,C′关于y轴对称可得出CC′的值及PC=PC′,再利用勾股定理即可求出此时C′D(即PC+PD)的值,此题得解.【题目详解】解:作点C关于y轴的对称点C′,连接C′D交y轴于点P,此时PC+PD取得最小值,如图所示.当y=0时,﹣1x+4=0,解得:x=1,∴点A的坐标为(1,0).∵点C是OA的中点,∴OC=1,点C的坐标为(1,0).当x=1时,y=﹣1x+4=1,∴CD=1.∵点C,C′关于y轴对称,∴CC′=1OC=1,PC=PC′,∴PC+PD=PC′+PD=C′D=.故选:C.【题目点拨】本题考查了一次函数图象上点的坐标特征、线段垂直平分线的性质、勾股定理以及轴对称最短路线问题,利用两点之间线段最短,找出点P所在的位置是解题的关键.5、A【解题分析】分析:根据平行线性质求出∠A,根据三角形内角和定理得出∠2=180°∠1−∠A,代入求出即可.详解:∵AB∥CD.∴∠A=∠3=40°,∵∠1=60°,∴∠2=180°∠1−∠A=80°,故选:A.点睛:本题考查了平行线的性质:两直线平行,内错角相等.三角形内角和定理:三角形内角和为180°.6、D【分析】根据分式的定义即可求出答案.【题目详解】,,,是分式,共4个;
故答案为:D.【题目点拨】本题考查分式的定义,解题的关键是正确理解分式的定义.7、C【分析】先根据等腰三角形的性质求得∠ACB=68º,从而求出∠ACE=112º,再由求出的度数.【题目详解】∵在等腰中,顶角,∴∠ACB=,又∵,∠ACB=∠E+∠CDE,∴∠E=∠CDE=.故选:C.【题目点拨】考查了三角形外角性质、等腰三角形的性质和三角形内角和定理,解题关键是利用了三角形的一个外角等于与它不相邻的两个内角和.8、A【解题分析】先根据多边形的内角和公式(n-2)•180°求出截去一个角后的多边形的边数,再根据截去一个角后边数增加1,不变,减少1讨论得解.【题目详解】设多边形截去一个角的边数为n,则(n−2)⋅180°=1620°,解得n=11,∵截去一个角后边上可以增加1,不变,减少1,∴原来多边形的边数是10或11或12.故选A.【题目点拨】此题考查多边形内角与外角,解题关键在于掌握计算公式.9、D【分析】根据第四象限内的点的横坐标大于零,纵坐标小于零,可得答案.【题目详解】解:由第四象限内的点的横坐标大于零,纵坐标小于零,得在第四象限内的是(1,-2),
故选:D.【题目点拨】本题考查了点的坐标,熟记各象限内点的坐标特征是解题关键.10、C【分析】根据平行线的公理及判定、角的定义和补角和余角的定义可逐一判断.【题目详解】解:A、过直线外一点有且只有一条直线与已知直线平行,是假命题;B、两个锐角的和不一定是钝角,如20°+20°=40°,是假命题;C、一个锐角的补角比它的余角大90°,是真命题;D、同旁内角互补,两直线平行,是假命题;故选:C.【题目点拨】本题主要考查平行线的公理及性质,掌握平行线的公理及判定、角的定义和补角和余角的定义是关键.二、填空题(每小题3分,共24分)11、31【解题分析】试题解析:根据题意,故有∴原式=3(2+mm)+2mn−5(mn−5)=31.故答案为31.12、【分析】根据等边三角形的性质以及30°的直角三角形的性质求出AC的长度,再利用勾股定理求出CE的长度即可得出答案.【题目详解】如图:设AB与x轴交于E点∵AB⊥CE∴∠CEA=90°∵∴AE=2,OE=2∵△ABC是等边三角形,CE⊥AB∴在Rt△ACE中,AC=2AE=4∴∴∴点C的坐标为故答案为:【题目点拨】本题考查了等边三角形,30°的直角三角形的性质,勾股定理,掌握等边三角形,30°的直角三角形的性质,勾股定理是解题的关键.13、1【分析】过点C作CD⊥AB于点D,设旗杆的高度为xm,在中利用勾股定理即可得出答案.【题目详解】如图,过点C作CD⊥AB于点D,则设旗杆的高度为xm,则在中,解得即旗杆的高度为1m故答案为:1.【题目点拨】本题主要考查勾股定理,掌握勾股定理的内容,构造出直角三角形是解题的关键.14、(0,-1)【解题分析】已知点A(3a-1,1-6a)在y轴上,可得3a-1=0,解得,所以3a-1=0,1-6a=-1,即A的坐标为(0,-1).15、15°.【解题分析】解:由三角形的外角的性质可知,∠α=60°﹣45°=15°,故答案为:15°.16、十【分析】根据正多边形的每个内角相等,可得正多边形的内角和,再根据多边形的内角和公式,可得答案.【题目详解】解:设正多边形是n边形,由题意得(n−2)×180°=144°×n.解得n=10,故答案为十.【题目点拨】本题考查了多边形的内角,利用了正多边形的内角相等,多边形的内角和公式.17、x<.【分析】依据二次根式有意义的条件,即可得出x的取值范围.【题目详解】二次根式中,1-2x>0,∴x的取值范围是x<,故答案为:x<.【题目点拨】本题主要考查了二次根式有意义的条件,如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.18、1【分析】根据整式乘法的完全平方公式解答即可.【题目详解】解:∵(a+b)2=25,∴a2+2ab+b2=25,∴19+2ab=25,∴ab=1.故答案为:1.【题目点拨】本题考查了整式乘法的完全平方公式,属于基础题型,熟练掌握完全平方公式、灵活应用整体思想是解题的关键.三、解答题(共66分)19、,.【分析】原式前部分先约分再和后一部分通分,求出最简式,再代值计算.【题目详解】原式=当x=.原式=.【题目点拨】此题考查分式的混合运算,二次根式的化简求值,解题关键在于掌握运算法则.20、(1)能,具体见解析;(2)证明见解析.【分析】(1)方法1:量出∠C的大小;作∠B=∠C;则∠B的一条边和∠C的一条边的延长线交于点A;方法2:作边BC的垂直平分线与∠C的另一边的延长线交于点A,连接AB即可;方法3:将长方形纸片对折使点B和点C重合,找到∠C的另一边的延长线与折痕的交点A,连接AB即可;(2)证法1:作∠A的平分线AD,交BC与点D,利用AAS即可证出△ABD≌△ACD,从而得出AB=AC,根据等腰三角形的定义即可得出结论;证法2:过A作AD⊥BC于D,利用AAS即可证出△ABD≌△ACD,从而得出AB=AC,根据等腰三角形的定义即可得出结论.【题目详解】解:(1)方法1:量出∠C的大小;作∠B=∠C;则∠B的一条边和∠C的一条边的延长线交于点A.如下图所示:△ABC即为所求方法2:作边BC的垂直平分线与∠C的另一边的延长线交于点A,连接AB,如下图所示:△ABC即为所求.方法3:如图,将长方形纸片对折使点B和点C重合,找到∠C的另一边的延长线与折痕的交点A,连接AB,如下图所示:△ABC即为所求(2)证法1:作∠A的平分线AD,交BC与点D∴∠BAD=∠CAD在△ABD和△ACD中∴△ABD≌△ACD∴AB=AC,即△ABC为等腰三角形;证法2:过A作AD⊥BC于D,∴∠ADB=∠ADC=90°在△ABD和△ACD中∴△ABD≌△ACD∴AB=AC,即△ABC为等腰三角形.【题目点拨】此题考查的是根据一个底角和底边构造等腰三角形、全等三角形的判定及性质和等腰三角形的判定,掌握垂直平分线的性质、等角对等边、等腰三角形的定义和全等三角形的判定及性质是解决此题的关键.21、(1)k=﹣2;(2)点P的坐标为(3,2).【解题分析】试题分析:(1)因为直线分别与轴,轴相交于两点,O为坐标原点,A点的坐标为即直线经过所以解之即可;
(2)因为四边形是矩形,点P在直线上,设则而由此即可得到关于的方程,解方程即可求得.试题解析:(1)∵直线y=kx+8经过A(4,0),∴0=4k+8,∴k=−2.(2)∵点P在直线y=−2x+8上,设P(t,−2t+8),∴PN=t,PM=−2t+8,∵四边形PNOM是矩形,解得∴点P的坐标为22、(1);(2)是等边三角形.证明见解析.【分析】(1)由等腰三角形的性质,得到∠ABC=,由,即可求出;(2)连接,,则为等边三角形,然后得到,得到,,从而得到,则,即可得到为等边三角形.【题目详解】解:(1),,,∴,,,,∴;(2)是等边三角形.理由如下:连接,,,为等边三角形在与中,,,,,在和中,,是等边三角形.【题目点拨】本题考查了等边三角形的判定和性质,等腰三角形的性质,全等三角形的判定和性质,角平分线的性质,以及三角形的内角和定理,解题的关键是熟练掌握所学的知识,正确找到边的关系和角的关系,从而进行证明.23、详见解析.【分析】首先根据△ABC和△ECD都是等腰直角三角形,可知EC=DC,AC=CB,再根据同角的余角相等可证出∠1=∠1,再根据全等三角形的判定方法SAS即可证出△ACE≌△BCD.【题目详解】解:∵△ABC和△ECD都是等腰直角三角形,∴EC=DC,AC=CB.∵∠ACB=∠DCE=90°,∴∠ACB﹣∠3=∠ECD﹣∠3,即:∠1=∠1.在△ACE和△BCD中,∵,∴△ACE≌△BCD(SAS).【题目点拨】本题考查了全等三角形的判定方法,关键是熟练掌握全等三角形的5种判定方法:SSS、SAS、AAS、ASA、HL,选用哪一种方法,取决于题目中的已知条件.24、(1)它的顶端不能到达5.7米高的墙头;(2)梯子的顶端将下滑动2米.【解题分析】(1)由题意可得,AB=6m,OB=13AB=2m,在Rt△AOB中,由勾股定理求得OA的长,与5.7比较即可得结论;(2)由题意求得OD=32米,在Rt△DOC中,由勾股定理求得OC的长,即可求得AC的长,由此即可求得结论【题目详解】(1)由题意可得,AB=6m,OB=13在Rt△AOB中,由勾股定理可得,AO=AB∵42<5.7,∴梯子的顶端不能到达5.7米高的墙头;(2)因梯子底端向左滑动(32﹣2)米,∴BD=(32﹣2)米,∴OD=OB+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 供方采购合同范本
- 企业项目合资合同范本
- 浙江长兴县龙山中学人教版七年级下册历史与社会第八单元第三课 中华文明探源教学设计
- 2024年韶关市曲江区住房和城乡建设管理局招聘笔试真题
- 公司英文合同范本
- 农田路养护合同范本
- 前台收银合同范本
- 包材销售合同范本
- 2024年金昌市金川区图书馆招聘笔试真题
- 农村自建住宅买卖合同范本
- 世界给予我的 课件-2024-2025学年高二下学期开学第一课主题班会
- 法社会学教程(第三版)教学
- 大学学院学生心理危机预防与干预工作预案
- 国有土地上房屋征收与补偿条例 课件
- 安全文明施工管理(EHS)方案(24页)
- 水厂项目基于BIM技术全生命周期解决方案-城市智慧水务讲座课件
- 幼儿园绘本:《闪闪的红星》 红色故事
- 铁路建设项目施工企业信用评价办法(铁总建设〔2018〕124号)
- 叉形件加工设计与分析论文
- 高强螺栓质保书
- 市政工程施工进度网络图
评论
0/150
提交评论