中考数学复习满分突破(全国通用):专题31 平移与旋转(原卷版)_第1页
中考数学复习满分突破(全国通用):专题31 平移与旋转(原卷版)_第2页
中考数学复习满分突破(全国通用):专题31 平移与旋转(原卷版)_第3页
中考数学复习满分突破(全国通用):专题31 平移与旋转(原卷版)_第4页
中考数学复习满分突破(全国通用):专题31 平移与旋转(原卷版)_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题31平移与旋转【考查题型】【知识要点】平移的概念:在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移变换。平移的性质:1)平移前后的两个图形形状和大小完全相同,对应角相等,对应边相等,平移前后两个图形的周长和面积相等。2)对应线段(或对应边)平行(或在同一直线上)且相等。3)任意两组对应点的连线平行(或在同一条直线上)且相等。旋转的概念:把一个平面图形绕着平面内某一点转动一个角度,叫作图形的旋转。【补充说明】如图所示,是绕定点O逆时针旋转得到的,其中点A与点A’叫作对应点,线段OB与线段叫作对应线段,与叫作对应角,点叫作旋转中心,(或)的度数叫作旋转的角度。【注意】1)图形的旋转由旋转中心、旋转方向与旋转的角度所决定.2)旋转中心可以在图形内,也可以是图形外。【图形旋转的三要素】旋转中心、旋转方向和旋转角。旋转的特征:1)对应点到旋转中心的距离相等(例:OA与OA’);2)对应点与旋转中心所连线段的夹角等于旋转角(∠AOA’=∠BOB’=45°);3)旋转前后的两个图形全等(△ABO≌△A’B’O)。旋转作图的步骤方法:1)确定旋转中心、旋转方向、旋转角;2)找出图形上的关键点;3)连接图形上的关键点与旋转中心,然后按旋转方向分别将它们旋转一定的角度,得到关键点的对应点;4)按原图的顺序连接这些对应点,即得旋转后的图形。平移、旋转、轴对称之间的关系:联系变化后不改变图形的大小和形状,对应线段相等、对应角相等。区别变化方式

不同平移:将一个图形沿某个方向移动一定距离。

旋转:将一个图形绕一个顶点沿某个方向转一定角度。

轴对称:将一个图形沿一条直线对折。对应线段、对应角之间的关系不同平移:变化前后对应线段平行(或在一条直线上),对应点连线平行(或在一条直线上),对应角的两边平行(或在一条直线上)、方向一致。

旋转:变化前后任意一对对应点与旋转中心的连线所称的角都是旋转角。

轴对称:对应线段或延长线如果相交,那么交点在对称轴上。确定条件

不同平移:距离与方向

旋转:旋转的三要素。

轴对称:对称轴考查题型一图形的平移典例1.(2022·广西·统考中考真题)2022北京冬残奥会的会徽是以汉字“飞”为灵感来设计的,展现了运动员不断飞跃,超越自我,奋力拼搏,激励世界的冬残奥精神下列的四个图中,能由如图所示的会徽经过平移得到的是(

)A. B. C. D.变式1-1.(2022·湖南怀化·统考中考真题)如图,△ABC沿BC方向平移后的得到△DEF,已知BC=5,EC=2,则平移的距离是()A.1 B.2 C.3 D.4变式1-2.(2021·浙江绍兴·统考中考真题)数学兴趣小组同学从“中国结”的图案(图1)中发现,用相同的菱形放置,可得到更多的菱形.如图2,用2个相同的菱形放置,得到3个菱形.下面说法正确的是(

)A.用3个相同的菱形放置,最多能得到6个菱形B.用4个相同的菱形放置,最多能得到16个菱形C.用5个相同的菱形放置,最多能得到27个菱形D.用6个相同的菱形放置,最多能得到41个菱形变式1-4.(2019·四川乐山·统考中考真题)下列四个图形中,可以由图通过平移得到的是()A. B. C. D.考查题型二利用平移的性质求解典例2.(2022·浙江嘉兴·统考中考真题)“方胜”是中国古代妇女的一种发饰,其图案由两个全等正方形相叠组成,寓意是同心吉祥.如图,将边长为2cm的正方形ABCD沿对角线BD方向平移1cm得到正方形,形成一个“方胜”图案,则点D,之间的距离为(

)A.1cm B.2cm C.(-1)cm D.(2-1)cm变式2-1.(2022·福建·统考中考真题)如图,现有一把直尺和一块三角尺,其中,,AB=8,点A对应直尺的刻度为12.将该三角尺沿着直尺边缘平移,使得△ABC移动到,点对应直尺的刻度为0,则四边形的面积是(

)A.96 B. C.192 D.变式2-2.(2021·四川雅安·统考中考真题)如图,将沿边向右平移得到,交于点G.若..则的值为(

)A.2 B.4 C.6 D.8变式2-3.(2022·湖南益阳·统考中考真题)如图,将边长为3的正方形ABCD沿其对角线AC平移,使A的对应点A′满足AA′=AC,则所得正方形与原正方形重叠部分的面积是_____.变式2-4.(2022·辽宁营口·统考中考真题)如图,将沿着方向平移得到,只需添加一个条件即可证明四边形是菱形,这个条件可以是____________.(写出一个即可)变式2-5.(2022·河南·统考中考真题)如图,将扇形AOB沿OB方向平移,使点O移到OB的中点处,得到扇形.若∠O=90°,OA=2,则阴影部分的面积为______.变式2-6.(2022·浙江台州·统考中考真题)如图,△ABC的边BC长为4cm.将△ABC平移2cm得到△A′B′C′,且BB′⊥BC,则阴影部分的面积为______.变式2-7.(2022·浙江金华·统考中考真题)如图,在中,.把沿方向平移,得到,连结,则四边形的周长为_____.考查题型三平移(作图)典例3.(2022·陕西·统考中考真题)如图,△ABC的顶点坐标分别为.将平移后得到,且点A的对应点是,点B、C的对应点分别是.(1)点A、之间的距离是__________;(2)请在图中画出△A变式3-1.(2022·浙江温州·统考中考真题)如图,在的方格纸中,已知格点P,请按要求画格点图形(顶点均在格点上).(1)在图1中画一个锐角三角形,使P为其中一边的中点,再画出该三角形向右平移2个单位后的图形.(2)在图2中画一个以P为一个顶点的钝角三角形,使三边长都不相等,再画出该三角形绕点P旋转后的图形.考查题型四平移的坐标变化规律典例4.(2021·山东日照·统考中考真题)在平面直角坐标系中,把点向右平移两个单位后,得到对应点的坐标是()A. B. C. D.变式4-1.(2022·辽宁大连·统考中考真题)如图,在平面直角坐标系中,点A的坐标是,将线段向右平移4个单位长度,得到线段,点A的对应点C的坐标是_______.变式4-2.(2022·山东淄博·统考中考真题)如图,在平面直角坐标系中,平移△ABC至△A1B1C1的位置.若顶点A(﹣3,4)的对应点是A1(2,5),则点B(﹣4,2)的对应点B1的坐标是________.变式4-3.(2021·山东淄博·统考中考真题)在平面直角坐标系中,点关于轴的对称点为,将点向左平移3个单位得到点,则的坐标为__________.变式4-4.(2021·湖北·统考中考真题)如图,在平面直角坐标系中,动点P从原点O出发,水平向左平移1个单位长度,再竖直向下平移1个单位长度得到点;接着水平向右平移2个单位长度,再竖直向上平移2个单位长度得到点;接着水平向左平移3个单位长度,再竖直向下平移3个单位长度得到点;接着水平向右平移4个单位长度,再竖直向上平移4个单位长度得到点,…,按此作法进行下去,则点的坐标为___________.考查题型五利用旋转的性质求解典例5.(2022·内蒙古包头·中考真题)如图,在中,,将绕点C顺时针旋转得到,其中点与点A是对应点,点与点B是对应点.若点恰好落在边上,则点A到直线的距离等于(

)A. B. C.3 D.2变式5-1.(2022·宁夏·中考真题)如图,直线,的边在直线上,,将绕点顺时针旋转至,边交直线于点,则______.变式5-2.(2022·辽宁阜新·统考中考真题)如图,在中,,,将绕点逆时针旋转,得到,则点到的距离是______.变式5-3.(2021·青海·统考中考真题)如图所示的图案由三个叶片组成,绕点O旋转120°后可以和自身重合,若每个叶片的面积为4cm2,∠AOB=120°,则图中阴影部分的面积为__________.变式5-4.(2022·山东济南·统考中考真题)如图1,△ABC是等边三角形,点D在△ABC的内部,连接AD,将线段AD绕点A按逆时针方向旋转60°,得到线段AE,连接BD,DE,CE.(1)判断线段BD与CE的数量关系并给出证明;(2)延长ED交直线BC于点F.①如图2,当点F与点B重合时,直接用等式表示线段AE,BE和CE的数量关系为_______;②如图3,当点F为线段BC中点,且ED=EC时,猜想∠BAD的度数,并说明理由.变式5-5.(2022·辽宁抚顺·统考中考真题)在中,,线段绕点A逆时针旋转至(不与重合),旋转角记为,的平分线与射线相交于点E,连接.(1)如图①,当时,的度数是_____________;(2)如图②,当时,求证:;(3)当时,请直接写出的值.变式5-6.(2022·山西·中考真题)综合与实践问题情境:在Rt△ABC中,∠BAC=90°,AB=6,AC=8.直角三角板EDF中∠EDF=90°,将三角板的直角顶点D放在Rt△ABC斜边BC的中点处,并将三角板绕点D旋转,三角板的两边DE,DF分别与边AB,AC交于点M,N,猜想证明:(1)如图①,在三角板旋转过程中,当点M为边AB的中点时,试判断四边形AMDN的形状,并说明理由;问题解决:(2)如图②,在三角板旋转过程中,当时,求线段CN的长;(3)如图③,在三角板旋转过程中,当AM=AN时,直接写出线段AN的长.变式5-7.(2021·贵州黔西·中考真题)如图1,D为等边△ABC内一点,将线段AD绕点A逆时针旋转60°得到AE,连接CE,BD的延长线与AC交于点G,与CE交于点F.(1)求证:BD=CE;(2)如图2,连接FA,小颖对该图形进行探究,得出结论:∠BFC=∠AFB=∠AFE.小颖的结论是否正确?若正确,请给出证明;若不正确,请说明理由.变式5-8.(2021·湖南株洲·统考中考真题)将一物体(视为边长为米的正方形)从地面上挪到货车车厢内.如图所示,刚开始点与斜面上的点重合,先将该物体绕点按逆时针方向旋转至正方形的位置,再将其沿方向平移至正方形的位置(此时点与点重合),最后将物体移到车厢平台面上.已知,,过点作于点,米,米.(1)求线段的长度;(2)求在此过程中点运动至点所经过的路程.考查题型六旋转(作图)典例6.(2022·湖南·统考中考真题)如图所示的方格纸格长为一个单位长度)中,的顶点坐标分别为,,.(1)将沿轴向左平移5个单位,画出平移后的△(不写作法,但要标出顶点字母);(2)将绕点顺时针旋转,画出旋转后的△(不写作法,但要标出顶点字母);(3)在(2)的条件下,求点绕点旋转到点所经过的路径长(结果保留.变式6-1.(2020·辽宁阜新·中考真题)如图,在平面直角坐标系中,顶点的坐标分别为,,.(1)画出与关于y轴对称的;(2)将绕点顺时针旋转90°得到,弧是点A所经过的路径,则旋转中心的坐标为___________.(3)求图中阴影部分的面积(结果保留).变式6-2.(2020·湖北武汉·中考真题)在的网格中建立如图的平面直角坐标系,四边形的顶点坐标分别为,,,.仅用无刻度的直尺在给定网格中按下列步骤完成画图,并回答问题:(1)将线段绕点逆时针旋转,画出对应线段;(2)在线段上画点,使(保留画图过程的痕迹);(3)连接,画点关于直线的对称点,并简要说明画法.考查题型七旋转的坐标变化规律典例7.(2022·山东青岛·统考中考真题)如图,将先向右平移3个单位,再绕原点O旋转,得到,则点A的对应点的坐标是(

)A. B. C. D.变式7-1.(2022·黑龙江绥化·统考中考真题)如图,线段在平面直角坐标系内,A点坐标为,线段绕原点O逆时针旋转90°,得到线段,则点的坐标为(

)A. B. C. D.变式7-2.(2022·河南·统考中考真题)如图,在平面直角坐标系中,边长为2的正六边形ABCDEF的中心与原点O重合,轴,交y轴于点P.将△OAP绕点O顺时针旋转,每次旋转90°,则第2022次旋转结束时,点A的坐标为(

)A. B. C. D.变式7-3.(2022·四川内江·统考中考真题)如图,在平面直角坐标系中,点B、C、E在y轴上,Rt△ABC经过变换得到Rt△ODE,若点C的坐标为(0,1),AC=2,则这种变换可以是(

)A.△ABC绕点C顺时针旋转90°,再向下平移3B.△ABC绕点C顺时针旋转90°,再向下平移1C.△ABC绕点C逆时针旋转90°,再向下平移1D.△ABC绕点C逆时针旋转90°,再向下平移3变式7-4.(2022·贵州安顺·统考中考真题)如图,在平面直角坐标系中,将边长为2的正六边形绕点顺时针旋转个,得到正六边形,当时,正六边形的顶点的坐标是(

)A. B. C. D.变式7-5.(2021·黑龙江牡丹江·统考中考真题)如图,△AOB中,OA=4,OB=6,AB=2,将△AOB绕原点O旋转90°,则旋转后点A的对应点A′的坐标是(

)A.(4,2)或(﹣4,2) B.(2,﹣4)或(﹣2,4)C.(﹣2,2)或(2,﹣2) D.(2,﹣2)或(﹣2,2)变式7-6.(2021·四川达州·统考中考真题)在平面直角坐标系中,等边如图放置,点的坐标为,每一次将绕着点逆时针方向旋转,同时每边扩大为原来的2倍,第一次旋转后得到,第二次旋转后得到,…,依次类推,则点的坐标为()A. B.C. D.变式7-7.(2022·山东淄博·统考中考真题)如图,正方形ABCD的中心与坐标原点O重合,将顶点D(1,0)绕点A(0,1)逆时针旋转90°得点D1,再将D1绕点B逆时针旋转90°得点D2,再将D2绕点C逆时针旋转90°得点D3,再将D3绕点D逆时针旋转90°得点D4,再将D4绕点A逆时针旋转90°得点D5……依此类推,则点D2022的坐标是________.考查题型八旋转综合题(与线段有关)典例8.(2022·广西柳州·统考中考真题)如图,在正方形ABCD中,AB=4,G是BC的中点,点E是正方形内一个动点,且EG=2,连接DE,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,则线段CF长的最小值为_____.变式8-1.(2022·辽宁盘锦·中考真题)如图,四边形ABCD是正方形,△ECF为等腰直角三角形,∠ECF=90°,点E在BC上,点F在CD上,P为EF中点,连接AF,G为AF中点,连接PG,DG,将Rt△ECF绕点C顺时针旋转,旋转角为α(0°≤α≤360°).(1)如图1,当α=0°时,DG与PG的关系为;(2)如图2,当α=90°时①求证:△AGD≌△FGM;②(1)中的结论是否成立?若成立,请写出证明过程;若不成立,请说明理由.变式8-2.(2022·江苏南通·统考中考真题)如图,矩形中,,点E在折线上运动,将绕点A顺时针旋转得到,旋转角等于,连接.(1)当点E在上时,作,垂足为M,求证;(2)当时,求的长;(3)连接,点E从点B运动到点D的过程中,试探究的最小值.考查题型九旋转综合题(与面积有关)典例9.(2022·宁夏·中考真题)综合与实践知识再现如图,中,,分别以、、为边向外作的正方形的面积为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论