版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题20蚂蚁爬行模型蚂蚁爬行模型的概述:蚂蚁在某几何体的一个顶点,爬行到另外一个相对的顶点去吃食物,求所走的最短路径是多少。蚂蚁爬行模型的实质:两点之间,线段最短。模型一:蚂蚁沿着长方体表面爬行,从点A到点B的最短距离:解题方法:在长方体问题中,我们需要将长方体展开,然后利用两点之间线段最短画图求解。如果长方体的长、宽、高各不相同,一般分三种情况讨论。分类讨论示意图展开图最短距离小结前+上AB=a最小值取决于ab,bc,ac的大小左+上AB=b前+右AB=c模型二:蚂蚁沿着圆柱表面爬行,求最短距离:解题方法:在圆柱体中爬行,要分两种情况,圆柱的侧面展开图是长方形,可能爬行了长方形的一半,也有可能爬行了整个长方形分类讨论示意图展开图最短距离爬行半圈最短距离=(Πr爬行一圈最短距离=(模型三(蚂蚁吃蜂蜜问题):求蚂蚁从点A沿着外壁爬行再沿着内壁爬行到点B蜂蜜处的最短距离。示意图展开图作法最短距离点A’为点A关于圆柱上沿的对称点,若点A’与点B的垂直距离为h,则问题转化为将军饮马问题求解AB=(Πr模型四:蚂蚁爬楼梯问题问题示意图展开图最短距离如图,三级台阶的每一级的长,宽,高分别为20dm,3dm,2dm,A和B是这个台阶两相对的端点,A点有一只蚂蚁想到B点去吃可口的食物,求最短路程AB=[(3+2)×3]=25模型五:蚂蚁爬圆锥问题问题示意图展开图最短距离如图,现有一个圆锥,圆锥的底面直径为4cm,母线长为6cm,一只蚂蚁在点A位置,食物在母线BC的中点点D处,蚂蚁沿着圆锥表面由点A向点D处爬行觅食,路线如图所示,求最短距离先利用扇形弧长公式求圆心角,再根据勾股定理求AD长【培优过关练】1.(2022秋·河北石家庄·九年级石家庄市第十七中学校考阶段练习)如图,有一圆锥形粮堆,其主视图是边长为的正三角形,母线的中点P处有一老鼠正在偷吃粮食,小猫从B处沿圆锥表面去偷袭老鼠,则小猫经过的最短路程是().A. B.4 C. D.62.(2022春·吉林长春·九年级校考阶段练习)如图,点是棱长为的正方体的一个顶点,点是一条棱的中点,将正方体按图中所示展开,则在展开图中两点间的距离为()A. B. C. D.3.(2022秋·广东惠州·九年级校考阶段练习)如图,圆锥的底面半径,母线,为底面直径,为底面圆周上一点,,为上一点,,现在有一只蚂蚁,沿圆锥表面从点爬到点,则蚂蚁爬行的最短路程是(
)A. B. C. D.4.(2022春·九年级课时练习)如图,圆柱的底面周长为12cm,AB是底面圆的直径,在圆柱表面的高BC上有一点D,且,.一只蚂蚁从点A出发,沿着圆柱体的表面爬行到点D的最短路程是(
)cm.A.14 B.12 C.10 D.85.(2022·山东淄博·统考二模)如图,一只蚂蚁要从圆柱体下底面的点,沿圆柱侧面爬到与相对的上底面的点,圆柱底面直径为4,母线为6,则蚂蚁爬行的最短路线长为(
)A. B.C. D.106.(2022·山东东营·统考二模)如图一个圆柱,底圆周长10cm,高4cm,一只蚂蚁沿外壁爬行,要从A点爬到B点,则最少要爬行(
)cm.A.9 B.14 C. D.7.(2022春·九年级课时练习)已知圆锥底面半径为1,母线长为4,地面圆周上有一点A,一只蚂蚁从点A出发沿圆锥侧面运动一周后到达母线PA中点B,则蚂蚁爬行的最短路程为()A. B. C. D.8.(2022·全国·九年级专题练习)如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是(
)A.cm B.13cm C.cm D.cm9.(2022秋·安徽芜湖·九年级校考开学考试)如图,长方体的长为,宽为,高为,点离点的距离为,一只蚂蚁如果要沿着长方体的表面从点爬到点,需要爬行的最短距离是(
)A. B. C. D.10.(2022秋·浙江·九年级专题练习)如图所示是一个几何体的三视图,如果一只蚂蚁从这个几何体的点B出发,沿表面爬到AC的中点D处,则最短路线长为(
)A. B. C. D.211.(2021春·广东肇庆·八年级统考期末)如图是一个三级台阶,它的每一级的长、宽和高分别为和和是这个台阶两个相对的端点,点有一只蚂蚁,想到点去吃可口的食物.则这只蚂蚁沿着台阶面爬行的最短路程是()A. B. C. D.12.(2022秋·广东梅州·九年级校考阶段练习)如图,一只蚂蚁沿着边长为的正方体表面从点出发,经过个面爬到点,如果它运动的路径是最短的,则的长为____.13.(2022春·广东茂名·九年级统考期末)如图,圆柱形玻璃容器高12cm,底面周长为24cm,在容器外侧距下底1cm的点A处有一只蚂蚁,在蚂蚁正对面距容器上底2cm的点B处有一滴蜂蜜,则蚂蚁要吃到蜂蜜所爬行的最短距离为______cm.14.(2022秋·山东临沂·九年级统考期末)如图,已知长方体的长为5cm,宽为4cm,高为3cm.一只蚂蚁如果沿长方体的表面A点爬到C点,那么这只蚂蚁需要走的最短路程为___________.15.(2022·山东临沂·校考二模)如图,圆柱底面半径为4厘米,高厘米,点A、B分别是圆柱两底面圆周上的点,且A、B在同一母线上,用一棉线从A顺着圆柱侧面绕3圈到B,求棉线最短为__________.16.(2022·江苏扬州·统考一模)如图,已知长方体的三条棱AB、BC、BD分别为4,5,2,蚂蚁从A点出发沿长方体的表面爬行到M的最短路程的平方是_____.17.(2021·全国·九年级专题练习)如图所示的长方体的长、宽、高分别为厘米、厘米、厘米.若一只蚂蚁从点出发沿着长方体的表面爬行到棱的中点处.则蚂蚁需爬行的最短路程是_______________厘米.18.(2022春·陕西西安·九年级校考期中)如图,有一个圆柱形食品盒,它的高为10cm,底面圆周长为24cm,如果在盒外AD的中点P处有一只蚂蚁,蚂蚁爬行的速度为2cm/s,它想吃到点B处(点A、B正好相对)的食物,那么它至少需要爬行_____s.19.(2023秋·广东佛山·八年级佛山市高明区沧江中学校考期末)如图,台阶A处的蚂蚁要爬到B处搬运食物,则它爬行的最短距离为_____.20.(2022秋·河北邢台·九年级金华中学校考期末)一个几何体的三视图如图所示,如果一只蚂蚁要从这个几何体中的点出发,沿表面爬到的中点,请你求出这条线路的最短路径.21.(2022秋·九年级单元测试)如图,是一块长、宽、高分别是,和的长方体木块,一只蚂蚁要从长方体木块的一个顶点处,沿着长方体的表面到长方体上和相对的顶点处吃食物,那么它需要爬行的最短路径是多少?22.(2022秋·浙江宁波·九年级校考期中)葛藤是一种刁钻的植物.它自己腰托不硬,为了争夺雨露阳光,常常绕着树干盘旋而上,它还有一手绝招,就是绕树盘旋上升的路段,总是沿着最短路线——盘旋前进的,难道植物也懂得数学吗?阅读以上信息,你能设计一种方法解决下列问题吗?(1)如图,如果树干的周长(即底面圆的周长)为30cm,从点A绕一圈到点B,葛藤升高40cm,则它爬行路程是多少厘米?(2)如果树干的周长(即底面圆的周长)为40cm,绕一圈爬行50cm,则爬行一圈升高多少厘米?如果爬行10圈到达树顶,则树干高多少厘米?23.(2022秋·辽宁沈阳·九年级校考阶段练习)如图,两个一样的长方体礼品盒,其底面是边长为的正方形,高为;现有彩带若干(足够用),数学组的小明和小刚分别采用自己喜欢的方式用彩带装饰两个礼品盒(假设彩带完美贴合长方体礼品盒).(1)如图1,小明从底面点A开始均匀缠绕长方体侧面,刚好缠绕2周到达点B,求所用彩带的长度;(2)如图2,小刚沿着长方体的表面从点C缠绕到点D,点D与点E的距离是5cm,请问小刚所需要的彩带最短是多少?(注:以上两问均要求画出平面展开示意图,再解答)24.(2022秋·辽宁葫芦岛·九年级校考阶段练习)如图1,等腰三角形中,当顶角的大小确定时,它的对边(即底边)与邻边(即腰或)的比值也就确定了,我们把这个比值记作,即,当时,如.(1),,的取值范围是;(2)如图2,圆锥的母线长为18,底面直径,一只蚂蚁从点P沿着圆锥的侧面爬行到点Q,求蚂蚁爬行的最短路径长.(精确到0.1,参考数据:,)25.(2022·江苏·九年级专题练习)在几何体表面上,蚂蚁怎样爬行路径最短?(1)如图①,圆锥的母线长为,B为母线的中点,点A在底面圆周上,的长为.在图②所示的圆锥的侧面展开图中画出蚂蚁从点A爬行到点B的最短路径,并标出它的长(结果保留根号).(2)图③中的几何体由底面半径相同的圆锥和圆柱组成.O是圆锥的顶点,点A在圆柱的底面圆周上.设圆锥的母线长为l,圆柱的高为h.①蚂蚁从点A爬行到点O的最短路径的长为________(用含l,h的代数式表示).②设的长为a,点B在母线上,.圆柱的侧面展开图如图④所示,在图中画出蚂蚁从点A爬行到点B的最短路径的示意图,并写出求最短路径的长的思路.26.(2022秋·浙江·九年级专题练习)李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长.(1)如图1,正方体的棱长为一只蚂蚁欲从正方体底面上的点沿着正方体表面爬到点处;(2)如图2,正四棱柱的底面边长为,侧棱长为,一只蚂蚁从正四棱柱底面上的点沿着棱柱表面爬到处;(3)如图3,圆锥的母线长为4cm,圆锥的侧面展开图如图4所示,且,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大数据时代的行业现状与创新考核试卷
- 玉石的形成与演化过程考核试卷
- 公共设施管理的变革与创新考核试卷
- 山东省泰安市肥城市2024-2025学年三年级上学期期中英语试卷
- 生物科技在食品安全的应用考核试卷
- 盐海淡水资源的开发与利用策略考核试卷
- 制定目标与实现计划培训考核试卷
- 防震防火课件教学课件
- DB11T 714.1-2010 电子政务运维服务支撑系统规范 第1部分:基本要求
- 地理课件模板教学课件
- 无人机校企合作协议
- 工程设备进场进场开箱验收单
- GB 16809-2008防火窗
- 《百团大战》历史课件
- 八年级上册道德及法治非选择题专项训练
- 2023年徐州市国盛控股集团有限公司招聘笔试题库及答案解析
- 机械课程设计~二级减速器设计教程
- 国家开放大学《传感器与测试技术》实验参考答案
- 工程造价司法鉴定实施方案
- 股骨干骨折的护理查房课件
- 计算方法第三章函数逼近与快速傅里叶变换课件
评论
0/150
提交评论