




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年江西省萍乡市长丰中学高一数学理模拟试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若将函数的图象向右平移个
单位长度后,与函数的图象重合,
则的最小值为
A.1
B.2
C.
D.参考答案:D2.已知函数,若,则实数(
)A.-2或6
B.-2或
C.-2或2
D.2或参考答案:A3.下列函数中值域是的是(
) A.B.C. D.参考答案:C4.给出下列八个命题:①垂直于同一条直线的两条直线平行;②垂直于同一条直线的两个平面平行;③垂直于同一平面的两条直线平行;④垂直于同一平面的两个平面平行;⑤平行于同一直线的两个平面平行;⑥平行于同一平面的两个平面平行;⑦平行于同一平面的两条直线平行;⑧平行于同一直线的两条直线平行;其中,正确命题的序号是________.参考答案:②③⑥⑧略5.下列函数中,值域为的是(
)A.y=
.B.
C.
D.参考答案:略6.设,则=(
)
A.
B.-
C.
D.参考答案:C7.数列中,,,则(
)A.
B.
C.
D.参考答案:B略8.函数的值域是
()A
B
C
D
参考答案:C9.某苗圃基地为了解基地内甲、乙两块地种植同一种树苗的长势情况,从两块地各随机抽取了10株树苗,用茎叶图表示上述两组树苗高度的数据,对两块地抽取树苗的高度的平均数甲,乙和方差进行比较,下面结论正确的是()A.甲>乙,乙地树苗高度比甲地树苗高度更稳定B.甲<乙,甲地树苗高度比乙地树苗高度更稳定C.甲<乙,乙地树苗高度比甲地树苗高度更稳定D.甲>乙,甲地树苗高度比乙地树苗高度更稳定参考答案:B【考点】茎叶图.【专题】对应思想;定义法;概率与统计.【分析】根据茎叶图,计算甲、乙的平均数,再根据数据的分布情况与方差的概念,比较可得答案.【解答】解:根据茎叶图有:①甲地树苗高度的平均数为=28cm,乙地树苗高度的平均数为=35cm,∴甲地树苗高度的平均数小于乙地树苗的高度的平均数;②甲地树苗高度分布在19~41之间,且成单峰分布,且比较集中在平均数左右,乙地树苗高度分布在10~47之间,不是明显的单峰分布,相对分散些;∴甲地树苗高度与乙地树苗高度比较,方差相对小些,更稳定些;故选:B.【点评】本题考查了利用茎叶图估计平均数与方差的应用问题,关键是正确读出茎叶图,并分析数据,是基础题.10.函数过定点(
)A.(1,0)
B.(0,2)
C.(0,0)
D.(0,1)参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.指数函数的图象经过点,则底数的值是_________参考答案:12.(4分)已知||=2,||=1,,的夹角为60°,=+5,=m﹣2,则m=
时,⊥.参考答案:考点: 平面向量数量积的运算;数量积表示两个向量的夹角.专题: 平面向量及应用.分析: 由已知,||=2,||=1,,的夹角为60°可求,的数量积,利用⊥得到数量积为0,得到关于m的等式解之.解答: 因为||=2,||=1,,的夹角为60°,所以=||||cos60°=1,又⊥,所以?=0,即(+5)(m﹣2)=0,所以=0,即4m﹣10+5m﹣2=0,解得m=;故答案为:.点评: 本题考查了向量的数量积定义以及向量垂直的性质;如果两个向量垂直,那么它们的数量积为0.13.已知函数
关于的方程有两个不同的实根,则实数
的取值范围是__________参考答案:
14.已知,则函数的解析式为
.参考答案:15.若||=||=|﹣|=1,则|+|=.参考答案:【考点】9R:平面向量数量积的运算.【分析】首先,根据条件得到,然后,根据向量的模的计算公式求解.【解答】解:∵||=||=|﹣|=1,∴,∴|+|=,∴|+|=,故答案为:.16.当x∈(1,3)时,不等式x2+mx+4<0恒成立,则m的取值范围是.参考答案:(﹣∞,﹣5]【考点】函数的最值及其几何意义.【分析】利用一元二次函数图象分析不等式在定区间上恒成立的条件,再求解即可.【解答】解:∵解:利用函数f(x)=x2+mx+4的图象,∵x∈(1,3)时,不等式x2+mx+4<0恒成立,∴,即,解得m≤﹣5.∴m的取值范围是(﹣∞,﹣5].故答案为:(﹣∞,﹣5].17.设定义在上的函数同时满足以下三个条件:①;②;③当时,,则
.参考答案:略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(本小题满分14分)在直角坐标系xOy中,若角的始边为x轴的非负半轴,终边为射线l:(≥0).求的值;参考答案:解:由射线的方程为,可得,……7分故=.
…………………14分略19.(12分)已知向量,函数的图象一个对称中心与它相邻的一条对称轴之间的距离为1,且其图象过点.(1)求的解析式;(2)当时,求的单调区间.参考答案:解:(1)=
·····(2分)依题知:
∴即
∴又过点
∴∵
∴
·····(4分)∴
·····(6分)(2)当时,当时即
单减
·····(9分)同样当时单增
·····(12分)略20.已知函数(1)求函数的周期;(2)求函数的单调递增区间;(3)若时,的最小值为–2,求a的值.参考答案:略21.已知函数f(x)=|x﹣a|﹣+a,x∈[1,6],a∈R.(Ⅰ)若a=1,试判断并证明函数f(x)的单调性;(Ⅱ)当a∈(1,6)时,求函数f(x)的最大值的表达式M(a).参考答案:【考点】带绝对值的函数;函数单调性的判断与证明;函数的最值及其几何意义.【分析】(Ⅰ)可求得f(x)=x﹣,利用f′(x)>0即可判断其单调性;(Ⅱ)由于1<a<6,可将f(x)化为f(x)=,分1<a≤3与3<a<6讨论函数的单调性,从而求得函数f(x)的最大值的表达式M(a).【解答】解:(1)∵a=1,x∈∈[1,6],∴f(x)=|x﹣1|﹣+1=x﹣,∴f′(x)=1+>0,∴f(x)是增函数;(2)因为1<a<6,所以f(x)=,①当1<a≤3时,f(x)在[1,a]上是增函数,在[a,6]上也是增函数,所以当x=6时,f(x)取得最大值为.②当3<a<6时,f(x)在[1,3]上是增函数,在[3,a]上是减函数,在[a,6]上是增函数,而f(3)=2a﹣6,f(6)=,当3<a≤时,2a﹣6≤,当x=6时,f(x)取得最大值为.当≤a<6时,2a﹣6>,当x=3时,f(x)取得最大值为2a﹣6.综上得,M(a)=.22.(本题12分)在某中学举行的电脑知识竞赛中,将九年级两个班参赛的学生成绩(得分均为整
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年行业职业技能考试试卷及答案
- 气候灾害链式反应-洞察及研究
- 2025年数字化转型与管理模型考试试卷及答案
- 2025年食品卫生检验员资格考试试题及答案
- 2025年社会行为与心理适应性的考试试题及答案
- 2025年数学建模大赛选手备考试卷及答案
- 2025年社交媒体营销与传播考试试题及答案
- 新农人电商培育-洞察及研究
- 2025年汽车工程专业执业资格考试试卷及答案
- 2025年教师资格证面试试题及答案
- 2025至2030年中国豆角丝行业投资前景及策略咨询报告
- 消防心理测试题或答案及答案
- 全国中级注册安全工程师考试《其他安全》真题卷(2025年)
- 南开大学-商业健康保险与医药产业高质量协同发展-团体补充医疗保险改革新视角-2025年3月20日
- 弱电安防施工安全培训
- 电梯维保半年工作总结
- 12《寻找生活中的标志》(教学设计)-2023-2024学年二年级上册综合实践活动鲁科版
- 七年级道法下册 第二学期 期末综合测试卷(人教海南版 2025年春)
- 《隐身复合材料》课件
- 架桥机常见安全隐患
- 学校保洁服务投标方案(技术标)
评论
0/150
提交评论