




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年河北省衡水市郾城县新店高级中学高一数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.把函数的图象向左平移后,所得函数的解析式是(A) (B) (C) (D)参考答案:B【知识点】三角函数图像变换【试题解析】把函数的图象向左平移个单位得到:
故答案为:B2.(5分)与直线l:3x﹣4y﹣1=0平行且到直线l的距离为2的直线方程是() A. 3x﹣4y﹣11=0或3x﹣4y+9=0 B. 3x﹣4y﹣11=0 C. 3x﹣4y+11=0或3x﹣4y﹣9=0 D. 3x﹣4y+9=0参考答案:A考点: 两条平行直线间的距离;直线的一般式方程与直线的平行关系.专题: 计算题;直线与圆.分析: 根据平行线的直线系方程设所求的直线方程为3x﹣4y+c=0,再由题意和两平行线间的距离公式列方程,求出c的值,代入所设的方程即可.解答: 由题意设所求的直线方程为3x﹣4y+c=0,根据与直线3x﹣4y﹣1=0的距离为2得=2,解得c=﹣11,或c=9,故所求的直线方程为3x﹣4y﹣11=0或3x﹣4y+9=0.故选:A.点评: 本题考查两直线平行的性质,两平行线间的距离公式,设出所求的直线方程为3x﹣4y+c=0,是解题的突破口.3.函数的零点所在的一个区间是(
)A.
B.
C.
D.参考答案:C解析:
,,∵是单调增函数,是单调增函数,∴在上是增函数,
∴在区间存在一个零点.
4.已知函数,若关于x的方程f(x)=k有三个不相等的实数根,则实数k的取值范围是()A.(﹣∞,﹣4) B.[﹣4,﹣3] C.(﹣4,﹣3] D.[﹣3,+∞)参考答案:C【考点】根的存在性及根的个数判断.【分析】作出函数的图象,结合图象,能求出实数k的取值范围.【解答】解:作出函数的图象,如下图:∵关于x的方程f(x)=k有三个不等的实根,∴函数的图象与直线y=k在三个不同的交点,结合图象,得:﹣4<k≤﹣3.∴实数k的取值范围是(﹣4,﹣3].故选C.5.(5分)函数的图象关于() A. x轴对称 B. y轴对称 C. 原点对称 D. 直线y=x对称参考答案:C考点: 奇偶函数图象的对称性.专题: 计算题.分析: 利用函数奇偶性的定义进行验证,可得函数是定义在(﹣∞,0)∪(0,+∞)上的奇函数,由此可得函数图象关于原点对称.解答: ∵∴﹣,=,可得f(﹣x)=﹣f(x)又∵函数定义域为{x|x≠0}∴函数f(x)在其定义域是奇函数根据奇函数图象的特征,可得函数f(x)图象关于原点对称故选C点评: 本题给出函数f(x),要我们找f(x)图象的对称性,着重考查了函数的奇偶性与函数图象之间关系的知识,属于基础题.6.定义域为R的函数,若关于的方程有3个不同实数解,且,则下列说法错误的是(
)
A.
B.
C.
D.参考答案:D略7.函数的图象如图,其中为常数,则下列结论正确的是(
)A
BC
D参考答案:A8.设的内角所对边的长分别为,若,则角=(
)A.
B.
C.
D.参考答案:B9.函数的最小正周期是(
)A. B. C. D.参考答案:D【分析】利用函数的周期公式,即可求解,得到答案.【详解】由题意,函数,所以函数的最小正周期是:.故选:D.【点睛】本题主要考查了三角函数的周期的求法,其中解答中熟记三角函数的图象与性质是解答的关键,着重考查了运算与求解能力,属于基础题.10.(5分)给出下列关系:①=R;②?Q;③|﹣3|?N+;④|﹣|∈Q,其中正确的个数为() A. 1个 B. 2个 C. 3个 D. 4个参考答案:A考点: 元素与集合关系的判断.专题: 集合.分析: 首先要弄清题中大写字母表示的数集的含义:R表示实数集,Q表示有理数集,N*表示正整数集,Z表示整数集,在这些概念的基础之上,再对四个命题加以判断,就不难得出正确命题的个数了.解答: 对于①,因为是实数,用符号表示为:∈R,即是集合中的元素,=R符号使用错误,故①错误,对于②,因为是无理数,用符号表示为:?Q,故②正确,对于③,因为|﹣3|=3是正整数,用符号表示为:3∈N*,|﹣3|?N+,符号使用错误,故③错误,对于④,因为|﹣|=是无理数,?Q,④错误.正确命题是②,故答案为:A.点评: 本题借助于几个数所属数集的关系,着重考查了集合的元素与集合的关系和大写字母表示数集的含义等知识点,属于基础题.二、填空题:本大题共7小题,每小题4分,共28分11.设四棱锥P—ABCD中,底面ABCD是边长为1的正方形,且直线PA⊥平面ABCD.过直线BD且垂直于直线PC的平面交PC于点E,当三棱锥E—BCD的体积取到最大值时,侧棱PA的长度为
参考答案:略12.①若锐角;②是定义在上的偶函数,且在上是增函数,若,则;③要得到函数的图象,只需将的图象向左平移个单位;④函数的零点只有1个且属于区间;⑤若关于的不等式恒成立,则;其中正确的序号为________.
参考答案:①③④略13.已知,则
;参考答案:原式=14.数列的前项和,则它的通项公式是__________.参考答案:略15..函数的定义域是________参考答案:[0,2]【分析】利用反函数定义域直接求解即可【详解】由题故答案为【点睛】本题考查反三角函数的定义域问题,准确计算是关键,是基础题16.已知命p:x∈R,ax2+2x+1≤0.若命题p是假命题,则实数a的取值范围是________.参考答案:(1,+∞)根据原命题是假命题,则其否定是真命题,结合二次函数图象求解.命题p的否定?p:x∈R,ax2+2x+1>0是真命题,故解得a>1.17.函数y=的定义域为.参考答案:(3,]【考点】函数的定义域及其求法.【分析】由根式内部的代数式大于等于0,然后求解对数不等式得答案.【解答】解:由log0.9(2x﹣6)≥0,得0<2x﹣6≤1,即3<x.∴函数y=的定义域为(3,].故答案为:(3,].三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.(10分)已知A,B,C为△ABC的三个内角,其所对的边分别为a,b,c,且2cos2+cosA=0.(1)求角A的值;(2)若a=2,b+c=4,求△ABC的面积.参考答案:19.已知函数直线是图像的任意两条对称轴,且的最小值为.(1)求函数的单调增区间;(2)求使不等式的的取值范围.(3)若求的值;参考答案:解:(1)由题意得则由解得故的单调增区间是……4分(2)由
略20.(1)解不等式:3≤x2﹣2x<8;(2)已知a,b,c,d均为实数,求证:(a2+b2)(c2+d2)≥(ac+bd)2.参考答案:【考点】不等式的证明.【分析】(1)直接利用二次不等式化简求解即可.(2)利用作差法化简,证明即可.【解答】解:(1)不等式:3≤x2﹣2x<8,即:,解得:,即x∈(﹣2,﹣1]∪[3,4).(2)证明:∵(a2+b2)(c2+d2)﹣(ac+bd)2=a2c2+a2d2+b2c2+b2d2﹣a2c2﹣2abcd﹣b2d2=a2d2+b2c2﹣2abcd=(ad﹣bc)2≥0∴(a2+b2)(c2+d2)≥(ac+bd)2.【点评】本题考查二次不等式组的解法,作差法证明不等式的方法,考查转化思想以及计算能力.21.如图,四边形ABCD是平行四边形,平面平面ABCD,,,,,,,G为BC的中点.(1)求证:平面;(2)求证:平面平面.参考答案:(1)见解析(2)见解析【分析】(1)取中点,连接,,利用三角形中位线定理,结合已知,可以证明出四边形为平行四边形,利用平行四边形的性质和线面平行的判定定理可以证明出平面;(2)在中,利用余弦定理可以求出的值,利用勾股定理的逆定理可以得,由平面平面,利用面面垂直的性质定理,可以得到平面,最后利用面面垂直的判断定理可以证明出平面平面.【详解】(1)取中点,连接,,在中,因为是中点所以且又因为,,所以且,即四边形为平行四边形,所以,又平面,平面平面.(2)在中,,,由余弦定理得,进而由勾股定理的逆定理得又因为平面,平面,又因为平面所以平面又平面,所以平面平面【点睛】本题考查了线面平行、面面垂直的证明,考查了线面平行的判断定理、面面垂直的性质定理和判定定理,考查了推理论证能力.22.如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.参考答案:【分析】(1)由D、E为PC、AC的中点,得出DE∥PA,从而得出PA∥平面DEF;(2)要证平面BDE⊥平面ABC,只需证DE⊥平面ABC,即证DE⊥EF,且DE⊥AC即可.【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 计算机一级模考试题及答案
- 植物学练习题库(附答案)
- 电梯广告投放合同协议书
- 租赁合同终止合同范本
- 建筑施工项目承包合同转让范本
- 最明确的借款合同
- 建筑设备租赁的合同范本
- 房地产开发公司劳动合同模板
- 二手车购销及售后服务合同
- 生态绿化养护与管理合同
- 玻璃更换施工方案
- 2025年生猪屠宰兽医卫生检疫人员考试题(附答案)
- 2025-2030垃圾发电产业市场深度分析及前景趋势与投资研究报告
- 中小学综合实践活动课程指导纲要:让学生更好地了解活动的意义和价值
- 物理-安徽省安庆市2024-2025学年高三下学期第二次模拟考试试卷(安庆二模)试题和答案
- 律师尽职调查工作方案
- 2024年杭州市粮食收储有限公司招聘考试真题
- 血液净化中心的感染预防与控制
- 2025山东省财金投资集团有限公司招聘19人笔试参考题库附带答案详解
- 铝合金搅拌摩擦沉积增材制造工艺的研究进展
- 2025年浙能集团应届生招聘818人笔试参考题库附带答案详解
评论
0/150
提交评论