一种基于鲸鱼优化的多路径路由发现算法_第1页
一种基于鲸鱼优化的多路径路由发现算法_第2页
一种基于鲸鱼优化的多路径路由发现算法_第3页
一种基于鲸鱼优化的多路径路由发现算法_第4页
一种基于鲸鱼优化的多路径路由发现算法_第5页
全文预览已结束

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一种基于鲸鱼优化的多路径路由发现算法AbstractMultiplepathroutingdiscoveryisachallengingprobleminnetworkcommunicationsduetothevariousparametersinvolved,suchasnetworktopology,trafficloadlevels,andtransmissionreliability.Toovercomethischallenge,anewalgorithmbasedontheWhaleOptimizationAlgorithmisproposedinthispaper.TheWhaleOptimizationAlgorithmisanature-inspiredalgorithmthatborrowsitstechniquesfromthebehaviorofhumpbackwhales'groupmovements.Theproposedalgorithmselectsmultiplepathstoroutedatapackets,seekingtofindtheoptimalsolutionthatbalancesthetrade-offbetweennetworkdelayandtransmissionrobustness.Experimentalresultsshowthattheproposedalgorithmoutperformsexistingworksintermsofreduceddelay,decreasedpacketloss,andenhancednetworkthroughput.IntroductionAsthedemandforhigh-speedandreliablecommunicationservicescontinuestorise,thenetworkarchitecturemustadaptaccordinglytoprovideefficientroutingofdatapackets.Multiplepathroutingdiscoveryisapromisingapproachtocopewiththesedemandssinceitcanbalanceloaddistribution,reducecongestion,improvereliability,andincreaseresilience.Thetraditionalapproachtorouting,whichusessinglepathrouting,isvulnerabletolinkfailures,resultingincommunicationdisruptionsandreducedqualityofservice.Multiplepathroutingishighlyefficientintermsofend-to-enddelay,bandwidthutilization,andpacketlossrate.Severalalgorithmshavebeenproposedtoaddressthemultiplepathroutingproblem,suchasAntColonyOptimization,GeneticAlgorithm,ParticleSwarmOptimization,andArtificialBeeColonyAlgorithm,etc.Amongthesealgorithms,WhaleOptimizationAlgorithm(WOA)isthemostrecentone,whichhasbeenshowntohavesuperiorperformanceinsolvingvariousoptimizationproblems.WOA,asnature-inspiredevolutionaryalgorithm,takesinspirationfromthesocialbehaviorofhumpbackwhaleswhilesearchingfortheoptimalsolution.WOAhasseveralsignificantadvantagescomparedtoothernature-inspiredalgorithmssuchassimplicity,adaptability,andfewertuningparameters.WOAemploysthreesearchmechanisms:exploration,exploitation,andboundaryconstraints,tobalancetheexplorationandexploitationofthesearchspace.ThesemechanismsincreasetheconvergencerateandsolutionaccuracyofWOA.WOAcontinuouslyimprovesitssearchabilitythroughiterationsthatupdatethepositionandvelocityofeachwhaleinthepopulation.ThispaperproposesanewalgorithmbasedontheWOAtosolvethemultiplepathroutingproblem.Theproposedalgorithmselectsdifferentpathsfortransmission,whichcanbalancetheloaddistribution,improvelinkutilization,andenhancenetworkcongestionavoidance.Themaincontributionsofthepapercanbesummarizedasfollows:1.ProposalofanewalgorithmbasedontheWOAtosolvethemultiplepathroutingproblem.2.EvaluationoftheproposedalgorithmagainstseveralexistingalgorithmssuchastheAntColonyAlgorithm,theGeneticAlgorithm,andtheParticleSwarmOptimizationAlgorithm.3.Analysisoftheexperimentalresultsobtainedandcomparisonoftheproposedalgorithm'sperformance.Theremainderofthispaperisorganizedasfollows:Section2summarizesthepreviousresearchonmultiplepathroutingalgorithms.Section3presentsindetailtheproposedalgorithmbasedontheWOAformultiplepathrouting.Section4providestheexperimentalsetupanddataanalysis.Finally,Section5summarizestheresultsandconcludesthepaper.RelatedWorkMultiplepathroutingalgorithmshavebeenwidelystudiedinrecentyears.Themaingoalofthesealgorithmsistobalancetheloaddistribution,mitigatenetworkcongestion,andimprovenetworkperformance.Theearliestworkonmultiplepathroutingwasproposedintheearly1990sandappliedtotheInternet.However,thesealgorithmswerenotwidelyusedduetoslowdatatransmissionrates.Withtheincreasingdemandforhigh-speednetworks,researchershavedevelopedmanyalgorithmstoaddressmultiplepathroutingproblems.Someofthemostpopularalgorithmsarediscussedbelow.TheAntColonyOptimization(ACO)Algorithm,inspiredbytheforagingbehaviorofants,hasbeenusedtosolvemanyoptimizationproblems.TheACOalgorithmappliesaprobabilisticpheromonemodeltoguidetheant'sdecision-makingprocessduringpathselection.ACOhasshownexcellentperformanceincongestionavoidance,loadbalancing,androutingoptimizationincomputernetworks.TheGeneticAlgorithm(GA)isanotherpopularalgorithmthathasbeenwidelyusedinnetworkroutingoptimization.GAusesevolutionarystrategiestooptimizenetworkroutingbyselectingthefittestsolutionsfromapopulationofpotentialsolutions.TheGAalgorithmisefficientinexploringthesearchspaceandcanfindnear-optimalsolutionsinashorttime.TheParticleSwarmOptimization(PSO)Algorithmmodelsthebehaviorofbirdsandfishtosolveoptimizationproblems.PSOishighlysuitableformultiplepathroutingincomputernetworks,asitcanimplementrapiddecisionswhenfacedwithcomplexnetworktopologies,unpredictabletrafficloads,andvariablenetworkperformance.WOAisarelativelynewalgorithmthatwasfirstproposedin2016.WOAismodeledbasedonthesocialbehaviorofhumpbackwhalestosolveoptimizationproblems,suchasthemultiplepathroutingproblem.WOAhasdemonstratedsuperiorperformanceinmanyapplicationsbyusingfewerparametersandrequiringnogradientinformation.ProposedAlgorithmTheWOAalgorithm'sbasicideaistomodelthesocialbehaviorofhumpbackwhalesandapplytheirbehaviortosearchforoptimalsolutions.TheWOAalgorithmemploysthreemechanisms:exploration,exploitation,andboundaryconstraints,tobalancethesolution'saccuracyandconvergencerate.WOAusesthefollowingequationsduringthesearchprocess:X(t+1)=X(t)+A(D(t,X(best))*C(t,best)-X(t))X1(t+1)=X(best)-A*r1*(X(Worst)-X(t))X2(t+1)=X(mean)-A*r2*(X(rand)-X(t))WhereX(t)isthecurrentsearchposition,X(t+1)istheupdatedsearchposition,X(best)representsthebestpositioninthesearch,X(Worst)istheworstsearchposition,X(mean)representsthemeansearchposition,X(rand)isarandomsearchposition,Aisthesearchcontrolparameter,r1andr2arerandomnumbersbetween0and1,andCandDarethetwotransferfunctionsoftheWOAalgorithm.TheproposedalgorithmbasedontheWOAformultiplepathroutingworksasfollows:1.TheWOAalgorithminitializesapopulationofhumpbackwhaleswithrandompositionsandvelocities.2.Thealgorithmdividesthenetworktopologyintoseveralsubnetworksbyperformingnetworkpartitioningusingagraph-theoreticalmethod.3.Thealgorithmselectsasourcenodeandadestinationnodeforeachsubnetwork.4.EachwhaleselectsapathfortransmissionbyapplyingtheWOAalgorithm,whichselectsasetofpathswithminimalend-to-enddelaysandmaximumrobustness.5.ThealgorithmupdatesthepositionandvelocityofeachwhaleandselectsagainthepathusingtheWOAalgorithm.6.Thealgorithmevaluatesthetransmissionpathbasedonseveralqualitymetrics,suchasend-to-enddelayandtransmissionrobustness.7.Thealgorithmselectsthebestsolutionfromthepopulationofhumpbackwhalesandtransmitsthedatapackettoitsdestinationonthatpath.8.Thealgorithmcontinuesthesearchandpathdiscoveryprocessuntilthemaximumnumberofiterationsisreachedorthetargetsolutionisachieved.ExperimentalResultsTheproposedalgorithmwasimplementedandevaluatedonasimulatednetworkenvironmentusingthens-3simulator.Thesimulationenvironmentincludedarandomnetworktopologywith20nodes,8paths,and160links,withauniformpacketgenerationrateof1packet/sec.Theperformanceoftheproposedalgorithmwascomparedwiththreestate-of-the-artalgorithms,namelyACO,GA,andPSO.Themetricsusedforevaluatingtheperformanceofthealgorithmswereend-to-enddelay,packetlossrate,andnetworkthroughput.TheresultsofthesimulationareshowninFig.1-3.Fig.1showstheend-to-enddelayofthedifferentalgorithms.ItcanbeseenthattheproposedalgorithmbasedonWOAhasthelowestend-to-enddelayamongallthetestedalgorithms.TheWOAalgorithmoutperformsACO,GA,andPSOintermsofreduceddelay.Fig.2showsthepacketlossrateforthetestedalgorithms.ItcanbeseenthattheproposedWOAalgorithmhasthelowestpacketlossratecomparedtotheothertested

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论