2024届江苏省徐州市睢宁高中南校数学高一上期末学业水平测试试题含解析_第1页
2024届江苏省徐州市睢宁高中南校数学高一上期末学业水平测试试题含解析_第2页
2024届江苏省徐州市睢宁高中南校数学高一上期末学业水平测试试题含解析_第3页
2024届江苏省徐州市睢宁高中南校数学高一上期末学业水平测试试题含解析_第4页
2024届江苏省徐州市睢宁高中南校数学高一上期末学业水平测试试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届江苏省徐州市睢宁高中南校数学高一上期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.如果直线l,m与平面满足和,那么必有()A.且 B.且C.且 D.且2.已知幂函数在上单调递减,则的值为A. B.C.或 D.3.已知某几何体的三视图(单位:cm)如图所示,则该几何体的体积是()A.108cm3 B.100cm3C.92cm3 D.84cm34.已知直三棱柱中,,,,则异面直线与所成角的余弦值为A. B.C. D.5.已知,其中a,b为常数,若,则()A. B.C.10 D.26.满足的集合的个数为()A. B.C. D.7.设,,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.已知函数是定义域为的奇函数,且,当时,,则()A. B.C. D.9.已知函数以下关于的结论正确的是()A.若,则B.的值域为C.在上单调递增D.的解集为10.若过两点的直线的斜率为1,则等于()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.____.12.已知函数是R上的减函数,则实数a的取值范围为_______13.若圆心角为的扇形的弧长为,则该扇形面积为__________.14.已知,则__________.15.若,则的最小值是___________,此时___________.16.如果方程x2+(m-1)x+m2-2=0的两个实根一个小于-1,另一个大于1,那么实数m的取值范围是________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知直线(1)求证:直线过定点(2)求过(1)的定点且垂直于直线直线方程.18.已知M(1,﹣1),N(2,2),P(3,0).(1)求点Q的坐标,满足PQ⊥MN,PN∥MQ.(2)若点Q在x轴上,且∠NQP=∠NPQ,求直线MQ的倾斜角.19.如图,、分别是的边、上的点,且,,交于.(1)若,求的值;(2)若,,,求的值.20.已知函数的部分图象如图所示.(1)求函数的解析式和单调增区间;(2)将函数的图象向左平移个单位,再将图象上各点的横坐标伸长到原来的倍(纵坐标不变)得到函数的图象,若关于的方程在区间上有两个不同的解、,求的值及实数的取值范围.21.已知全集,求:(1);(2).

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】根据题设线面关系,结合平面的基本性质判断线线、线面、面面的位置关系.【题目详解】由,则;由,则;由上条件,m与可能平行、相交,与有可能平行、相交.综上,A正确;B,C错误,m与有可能相交;D错误,与有可能相交故选:A2、A【解题分析】由函数为幂函数得,即,解得或.当时,,符合题意.当时,,不和题意综上.选A3、B【解题分析】由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角).据此即可得出体积解:由三视图可知:该几何体是一个棱长分别为6,6,3,砍去一个三条侧棱长分别为4,4,3的一个三棱锥(长方体的一个角)∴该几何体的体积V=6×6×3﹣=100故选B考点:由三视图求面积、体积4、C【解题分析】如图所示,补成直四棱柱,则所求角为,易得,因此,故选C平移法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角;②认定:证明作出的角就是所求异面直线所成的角;③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围5、A【解题分析】计算出,结合可求得的值.【题目详解】因为,所以,若,则.故选:A6、B【解题分析】列举出符合条件的集合,即可得出答案.【题目详解】满足的集合有:、、.因此,满足的集合的个数为.故选:B.【题目点拨】本题考查符合条件的集合个数的计算,只需列举出符合条件的集合即可,考查分析问题和解决问题的能力,属于基础题.7、D【解题分析】分别取特殊值验证充分性和必要性不满足,即可得到答案.【题目详解】充分性:取,满足“”,但是“”不成立,即充分性不满足;必要性:取,满足“”,但是“”不成立,即必要性不满足;所以“”是“”的既不充分也不必要条件.故选:D8、A【解题分析】由奇偶性结合得出,再结合解析式得出答案.【题目详解】由函数是定义域为的奇函数,且,,而,则故选:A9、B【解题分析】A选项逐段代入求自变量的值可判断;B选项分别求各段函数的值域再求并集可判断;C选项取特值比较大小可判断不单调递增;D选项分别求各段范围下的不等式的解集求并集即可判断.【题目详解】解:A选项:当时,若,则;当时,若,则,故A错误;B选项:当时,;当时,,故的值城为,B正确;C选项:当时,,当时,,在上不单调递增,故C错误;D选项:当时,若,则;当时,若,则,故的解集为,故D错误;故选:B.10、C【解题分析】根据斜率的计算公式列出关于的方程,由此求解出.【题目详解】因为,所以,故选:C.二、填空题:本大题共6小题,每小题5分,共30分。11、.【解题分析】本题直接运算即可得到答案.【题目详解】解:,故答案为:.【题目点拨】本题考查指数幂的运算、对数的运算,是基础题.12、【解题分析】由已知结合分段函数的性质及一次函数的性质,列出关于a的不等式,解不等式组即可得解.【题目详解】因为函数是R上的减函数所以需满足,解得,即所以实数a的取值范围为故答案为:13、【解题分析】根据扇形面积公式计算即可.【题目详解】设弧长为,半径为,为圆心角,所以,由扇形面积公式得.故答案为:14、##【解题分析】首先根据同角三角函数的基本关系求出,再利用二倍角公式及同角三角函数的基本关系将弦化切,最后代入计算可得;【题目详解】解:因为,所以,所以故答案为:15、①.1②.0【解题分析】利用基本不等式求解.【题目详解】因为,所以,当且仅当,即时,等号成立,所以其最小值是1,此时0,故答案为:1,016、(0,1)【解题分析】结合二次函数的性质得得到,在-1和1处的函数值均小于0即可.【题目详解】结合二次函数的性质得得到,在-1和1处的函数值均小于0即可,实数m满足不等式组解得0<m<1.故答案为(0,1)【题目点拨】这个题目考查了二次函数根的分布的问题,结合二次函数的图像的性质即可得到结果,题型较为基础.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2).【解题分析】⑴将直线化为,解不等式组即可得证;⑵由(1)知定点为,结合题目条件计算得直线方程解析:(1)根据题意将直线化为的解得,所以直线过定点(2)由(1)知定点为,设直线的斜率为k,且直线与垂直,所以,所以直线的方程为18、(1)(2)【解题分析】(1)设Q(x,y),根据PQ⊥MN得出,然后由PN∥MQ得出,解方程组即可求出Q的坐标;(2)设Q(x,0)由∠NQP=∠NPQ得出kNQ=﹣kNP,解方程求出Q的坐标,然后即可得出结果.【小问1详解】设Q(x,y),由已知得kMN=3,又PQ⊥MN,可得kMN×kPQ=﹣1即(x≠3)①由已知得kPN=﹣2,又PN∥MQ,可得kPN=kMQ,即(x≠1)②联立①②求解得x=0,y=1,∴Q(0,1);【小问2详解】设Q(x,0),∵∠NQP=∠NPQ,∴kNQ=﹣kNP,又∵kNQ,kNP=﹣2,∴2解得x=1,∴Q(1,0),又∵M(1,﹣1),∴MQ⊥x轴,故直线MQ的倾斜角为90°.19、(1);(2).【解题分析】(1)利用平面向量加法的三角形法则可求出、的值,进而可计算出的值;(2)设,设,根据平面向量的基本定理可得出关于、的方程组,解出这两个未知数,可得出关于、的表达式,然后用、表示,最后利用平面向量数量积的运算律和定义即可计算出的值.【题目详解】(1),,,因此,;(2)设,再设,则,即,所以,,解得,所以,因此,.【题目点拨】本题考查利用平面向量的基本定理求参数,同时也考查了平面向量数量积的计算,解题的关键就是选择合适的基底来表示向量,考查计算能力,属于中等题.20、(1),增区间为;(2),.【解题分析】(1)结合图象和,求得的值,再根据,,求得的解析式,然后利用正弦函数的单调性,即可得解;(2)根据函数图象的变换法则写出的解析式,再结合正弦函数的对称性以及图象,即可得解.【小问1详解】解:设的最小正周期为,由图象可知,则,故,又,所以,即,所以,所以,因为,所以,所以,所以,所以,令,则,故的单调增区间为.【小问2详解】解:将函数的图象向左平移个单位,再将图象上各点的横坐标伸长到原来的倍(纵坐标不变),得的图象,由,知,由

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论