江西省南昌十中2024届高一上数学期末复习检测试题含解析_第1页
江西省南昌十中2024届高一上数学期末复习检测试题含解析_第2页
江西省南昌十中2024届高一上数学期末复习检测试题含解析_第3页
江西省南昌十中2024届高一上数学期末复习检测试题含解析_第4页
江西省南昌十中2024届高一上数学期末复习检测试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省南昌十中2024届高一上数学期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若函数是偶函数,则满足的实数的取值范围是A. B.C. D.2.设P是△ABC所在平面内的一点,,则A. B.C. D.3.已知函数的值域为,那么实数的取值范围是()A. B.[-1,2)C.(0,2) D.4.,,,则()A. B.C. D.5.如果角的终边经过点,则()A. B.C. D.6.在空间坐标系中,点关于轴的对称点为()A. B.C. D.7.函数的图像的大致形状是()A. B.C. D.8.将函数的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数的图象,则函数在上的最大值和最小值分别为A. B.C. D.9.设集合,集合,则等于()A(1,2) B.(1,2]C.[1,2) D.[1,2]10.在长方体中,,,则直线与平面所成角的正弦值为()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.计算=_______________12.函数,若为偶函数,则最小的正数的值为______13.已知函数的图象过原点,且无限接近直线,但又不与该直线相交,则______14.如图,在三棱锥中,已知,,,,则三棱锥的体积的最大值是________.15.筒车是我国古代发明的一种水利灌溉工具,因其经济又环保,至今还在农业生产中得到使用.明朝科学家徐光启在《农政全书》中用图1描绘了筒车的工作原理.假定在水流稳定的情况下,筒车上的每一个盛水筒都做匀速圆周运动.如图2,将筒车抽象为一个几何图形(圆),以筒车转轮的中心为原点,过点的水平直线为轴建立如图直角坐标系.已知一个半径为1.6m的筒车按逆时针方向每30s匀速旋转一周,到水面的距离为0.8m.规定:盛水筒对应的点从水中浮现(时的位置)时开始计算时间,且设盛水筒从点运动到点时所经过的时间为(单位:s),且此时点距离水面的高度为(单位:m)(在水面下则为负数),则关于的函数关系式为___________,在水轮转动的任意一圈内,点距水面的高度不低于1.6m的时长为___________s.16.已知函数,若在区间上的最大值是,则_______;若在区间上单调递增,则的取值范围是___________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知,当时,.(1)若函数的图象过点,求此时函数的解析式;(2)若函数只有一个零点,求实数a的值.18.求值:(1)(2)2log310+log30.8119.计算下列各式的值:(1);(2).20.已知函数,记.(1)求函数的定义域;(2)判断函数的奇偶性,并说明理由;(3)是否存在实数,使得的定义域为时,值域为?若存在,求出实数的取值范围;若不存在,则说明理由.21.设函数(ω>0),且图象的一个对称中心到最近的对称轴的距离为(1)求在上的单调区间;(2)若,且,求sin2x0的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】结合为偶函数,建立等式,利用对数计算性质,计算m值,结合单调性,建立不等式,计算x范围,即可【题目详解】,,,,令,则,则,当,递增,结合复合函数单调性单调递增,故偶函数在上是增函数,所以由,得,.【题目点拨】本道题考查了偶函数性质和函数单调性知识,结合偶函数,计算m值,利用单调性,建立关于x的不等式,即可2、B【解题分析】由向量的加减法运算化简即可得解.【题目详解】,移项得【题目点拨】本题主要考查了向量的加减法运算,属于基础题.3、B【解题分析】先求出函数的值域,而的值域为,进而得,由此可求出的取值范围.【题目详解】解:因为函数的值域为,而的值域为,所以,解得,故选:B【题目点拨】此题考查由分段函数的值域求参数的取值范围,分段函数的值域等于各段上的函数的值域的并集是解此题的关键,属于基础题.4、B【解题分析】根据对数函数和指数函数的单调性即可得出,,的大小关系【题目详解】,,,故选:5、D【解题分析】由三角函数的定义可求得的值.【题目详解】由三角函数的定义可得.故选:D.【题目点拨】本题考查利用三角函数的定义求值,考查计算能力,属于基础题.6、C【解题分析】两点关于轴对称,则纵坐标相同,横坐标互为相反数,竖坐标互为相反数,由此可直接得出结果.【题目详解】解:两点关于轴对称,则纵坐标相同,横坐标互为相反数,竖坐标互为相反数,所以点关于轴的对称点的坐标是.故选:C.7、D【解题分析】化简函数解析式,利用指数函数的性质判断函数的单调性,即可得出答案.【题目详解】根据,是减函数,是增函数.在上单调递减,在上单调递增故选:D.【题目点拨】本题主要考查了根据函数表达式求函数图象,解题关键是掌握指数函数图象的特征,考查了分析能力和计算能力,属于中档题.8、A【解题分析】先化简f(x),再结合函数图象的伸缩变换,得到函数y=g(x)的解析式,进而根据正弦型函数最值的求法,求出函数的最大值与最小值【题目详解】∵函数,∴g(x)∵x∈∴4x∈∴当4x时,g(x)取最大值1;当4x时,g(x)取最小值故选A.9、B【解题分析】由指数函数、对数函数的性质可得、,再由交集的运算即可得解.【题目详解】因为,,所以.故选:B.【题目点拨】本题考查了指数不等式的求解及对数函数性质的应用,考查了集合交集的运算,属于基础题.10、D【解题分析】如图,连接交于点,连接,则结合已知条件可证得为直线与平面所成角,然后根据已知数据在求解即可【题目详解】解:如图,连接交于点,连接,因为长方体中,,所以四边形为正方形,所以,,所以,因为平面,所以,因为,所以平面,所以为直线与平面所成角,因为,,所以,在中,,所以直线与平面所成角的正弦值为,故选:D【题目点拨】此题考查线面角的求法,考查空间想象能力和计算能力,属于基础题二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】原式考点:三角函数化简与求值12、【解题分析】根据三角函数的奇偶性知应可用诱导公式化为余弦函数【题目详解】,其为偶函数,则,,,其中最小的正数为故答案【题目点拨】本题考查三角函数的奇偶性,解题时直接利用诱导公式分析即可13、##0.75【解题分析】根据条件求出,,再代入即可求解.【题目详解】因为的图象过原点,所以,即.又因为的图象无限接近直线,但又不与该直线相交,所以,,所以,所以故答案为:14、【解题分析】过作垂直于的平面,交于点,,作,通过三棱锥体积公式可得到,可分析出当最大时所求体积最大,利用椭圆定义可确定最大值,由此求得结果.【题目详解】过作垂直于的平面,交于点,作,垂足为,,当取最大值时,三棱锥体积取得最大值,由可知:当为中点时最大,则当取最大值时,三棱锥体积取得最大值.又,在以为焦点的椭圆上,此时,,,,三棱锥体积最大值为.故答案为:.【题目点拨】关键点点睛:本题考查三棱锥体积最值的求解问题,解题关键是能够将所求体积的最值转化为线段长度最值的求解问题,通过确定线段最值得到结果.15、①.②.10【解题分析】根据给定信息,求出以Ox为始边,OP为终边的角,求出点P的纵坐标即可列出函数关系,再解不等式作答.【题目详解】依题意,点到x轴距离为0.8m,而,则,从点经s运动到点所转过的角为,因此,以Ox为始边,OP为终边的角为,点P的纵坐标为,于是得点距离水面的高度,由得:,而,即,解得,对于k的每个取值,,所以关于的函数关系式为,水轮转动的任意一圈内,点距水面的高度不低于1.6m的时长为10s.故答案为:;10【题目点拨】关键点睛:涉及三角函数实际应用问题,探求动点坐标,找出该点所在射线为终边对应的角是关键,特别注意,始边是x轴非负半轴.16、①.②.【解题分析】根据定义域得,再得到取最大值的条件求解即可;先得到一般性的单调增区间,再根据集合之间的关系求解.【题目详解】因为,且在此区间上的最大值是,所以因为f(x)max=2tan=,所以tan==,即ω=由,得令,得,即在区间上单调递增又因在区间上单调递增,所以<,即所以的取值范围是故答案为:1,三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)或.【解题分析】(1)由计算;(2)只有一个解,由对数函数性质转化为方程只有一个正根,分,和讨论【题目详解】(1),当时,.函数的图象过点,,解得,此时函数.(2),∵函数只有一个零点,只有一个正解,∴当时,,满足题意;当时,只有一个正根,若,解得,此时,满足题意;若方程有两个相异实根,则两根之积为,此时方程有一个正根,符合题意;综上,或.【题目点拨】本题考查函数零点与方程根的分布问题.解题时注意函数的定义域,在转化时要正确确定方程根的范围,对多项式方程,要按最高次项系数为0和不为0进行分类讨论18、(1)(2)4【解题分析】(1)利用分数指数幂的性质运算即可;(2)利用对数的运算性质计算可得结果.试题解析:(1),(2)2log310+log30.81=19、(1)(2)【解题分析】(1)根据指数运算法则化简求值;(2)根据指数、对数的运算法则化简求值.【小问1详解】【小问2详解】20、(1);(2)奇函数,理由见解析;(3)不存在,理由见解析.【解题分析】(1)分别求f(x)和g(x)定义域,F(x)为这两个定义域的交集;(2)先判断定义域是否关于原点对称,再判断F(-x)与F(x)的关系;(3)先根据定义域和值域求出m,n,a的范围,再利用单调性将问题转化为方程有解问题.【小问1详解】由题意知要使有意义,则有,得所以函数的定义域为:【小问2详解】由(1)知函数F(x)的定义域为:,关于原点对称,函数为上的奇函数.【小问3详解】,假设存在这样的实数,则由可知令,则在上递减,在上递减,是方程,即有两个在上的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论