版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省衡水市衡水中学2024届高一上数学期末综合测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数的图象经过点,则的值为()A. B.C. D.2.直线l通过两直线7x+5y-24=0和x-y=0的交点,且点(5,1)到直线l的距离为,则直线l的方程是()A.3x+y+4=0 B.3x-y+4=0C.3x-y-4=0 D.x-3y-4=03.函数,,则函数的图象大致是()A. B.C. D.4.幂函数的图像经过点,若.则()A.2 B.C. D.5.采用系统抽样方法,从个体数为1001的总体中抽取一个容量为40的样本,则在抽取过程中,被剔除的个体数与抽样间隔分别为()A.1,25 B.1,20C.3,20 D.3,256.设,则的大小关系为()A. B.C. D.7.下列四个函数中,以π为最小正周期,且在区间上单调递减的是()A. B.C. D.8.已知函数则值域为()A. B.C. D.9.已知函数是定义在实数集上的不恒为零的偶函数,且对任意实数都有,则的值为A. B.C. D.10.对于任意实数,给定下列命题正确的是()A.若,则 B.若,则C.若,则 D.若,则二、填空题:本大题共6小题,每小题5分,共30分。11.已知,且,写出一个满足条件的的值___________12.若,则的定义域为____________.13.若集合有且仅有两个不同的子集,则实数=_______;14.如图1,正方形ABCD的边长为2,点M为线段CD的中点.现把正方形纸按照图2进行折叠,使点A与点M重合,折痕与AD交于点E,与BC交于点F.记,则_______.15.要制作一个容器为4,高为无盖长方形容器,已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是_______(单位:元)16.经过原点并且与直线相切于点的圆的标准方程是__________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知角的顶点在坐标原点,始边与轴的非负半轴重合,终边经过点.(1)求;(2)求的值.18.若=,是第四象限角,求的值.19.已知函数(1)求的值域;(2)当时,关于的不等式有解,求实数的取值范围20.函数,在内只取到一个最大值和一个最小值,且当时,;当时,(1)求此函数的解析式;(2)求此函数的单调递增区间21.有三个条件:①;②且;③最小值为2且.从这三个条件中任选一个,补充在下面的问题中,并作答.问题:已知二次函数满足_________,.(1)求的解析式;(2)设函数,求的值域.注:如果选择多个条件分别解答,按第一个解答计分.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】将点的坐标代入函数解析式,求出的值即可.【题目详解】因为函数的图象经过点,所以,则.故选:C.2、C【解题分析】交点坐标为,设直线方程为,即,则,解得,所以直线方程为,即,故选C点睛:首先利用点斜式设出直线,由距离公式求出斜率,解得直线方程.求直线的题型,基本方法是利用点斜式求直线方程,本题通过距离公式求斜率,写出直线方程3、C【解题分析】先判断出为偶函数,排除A;又,排除D;利用单调性判断B、C.【题目详解】因为函数,,所以函数.所以定义域为R.因为,所以为偶函数.排除A;又,排除D;因为在为增函数,在为增函数,所以在为增函数.因为为偶函数,图像关于y轴对称,所以在为减函数.故B错误,C正确.故选:C4、D【解题分析】利用待定系数法求出幂函数的解析式,再求时的值详解】解:设幂函数,其图象经过点,,解得,;若,则,解得故选:D5、A【解题分析】根据系统抽样的间隔相等,利用求出抽取过程中被剔除的个体数和抽样间隔【题目详解】解:因为余1,所以在抽取过程中被剔除的个体数是1;抽样间隔是25故选:A6、D【解题分析】利用指数函数与对数函数的性质,即可得出的大小关系.【题目详解】因为,,,所以.故选:D.【题目点拨】本题考查的是有关指数幂和对数值的比较大小问题,在解题的过程中,注意应用指数函数和对数函数的单调性,确定其对应值的范围.比较指对幂形式的数的大小关系,常用方法:(1)利用指数函数的单调性:,当时,函数递增;当时,函数递减;(2)利用对数函数的单调性:,当时,函数递增;当时,函数递减;(3)借助于中间值,例如:0或1等.7、B【解题分析】先判断各函数最小正周期,再确定各函数在区间上单调性,即可选择判断【题目详解】对于A,最小正周期为2π,在区间上单调递减,不合题意;对于B,最小正周期为π,在区间上单调递减,符合题意;对于C,最小正周期为2π,在区间上单调递减,不合题意;对于D,最小正周期为π,在区间上单调递增,不合题意;故选:B.8、C【解题分析】先求的范围,再求的值域.【题目详解】令,则,则,故选:C9、A【解题分析】方法一:当且时,由,得,令,则是周期为的函数,所以,当时,由得,,又是偶函数,所以,所以,所以,所以.选A方法二:当时,由得,,即,同理,所以又当时,由,得,因为是偶函数,所以,所以.选A点睛:解决抽象函数问题的两个注意点:(1)对于抽象函数的求函数值的问题,可选择定义域内的恰当的值求解,即要善于用取特殊值的方法求解函数值(2)由于抽象函数的解析式未知,故在解题时要合理运用条件中所给出的性质解题,有时在解题需要作出相应的变形10、C【解题分析】利用特殊值判断A、B、D,根据不等式的性质证明C;【题目详解】解:对于A:当时,若则,故A错误;对于B:若,,,,满足,则,,不成立,故B错误;对于C:若,则,所以,故C正确;对于D:若,满足,但是,故D错误;故选:C二、填空题:本大题共6小题,每小题5分,共30分。11、π(答案不唯一)【解题分析】利用,可得,又,确定可得结果.【题目详解】因为,所以,,则,或,,又,故满足要求故答案为:π(答案不唯一)12、【解题分析】使表达式有意义,解不等式组即可.【题目详解】由题,解得,即,故答案为:.【点晴】此题考函数定义域的求法,属于简单题.13、或.【解题分析】根据集合的子集个数确定出方程解的情况,由此求解出参数值.【题目详解】因为集合仅有两个不同子集,所以集合中仅有个元素,当时,,所以,满足要求;当时,,所以,此时方程解为,即,满足要求,所以或,故答案:或.14、【解题分析】设,则,利用勾股定理求得,进而得出,根据正弦函数的定义求出,由诱导公式求出,结合同角的三角函数关系和两角和的正弦公式计算即可.【题目详解】设,则,在中,,所以,即,解得,所以,所以在中,,则,又,所以.故答案为:15、160【解题分析】设底面长方形的长宽分别为和,先求侧面积,进一步求出总的造价,利用基本不等式求出最小值.【题目详解】设底面长方形的长宽分别为和,则,所以总造价当且仅当的时区到最小值则该容器的最低总造价是160.故答案为:160.16、【解题分析】设圆心坐标,则,,,根据这三个方程组可以计算得:,所以所求方程为:点睛:设出圆心与半径,根据题意列出方程组,解出圆心和半径即可三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)根据任意角三角函数的定义即可求解tanθ;(2)分式分子分母同时除以cos2θ化弦为切即可.【小问1详解】∵角的终边经过点,由三角函数的定义知,;【小问2详解】∵,∴.18、【解题分析】先计算正弦与正切,利用诱导公式化简可得【题目详解】若=,是第四象限角,则原式=.19、(1)(2)【解题分析】(1)由.令,换元后再配方可得答案;(2)由得,令,转化为时有解的问题可得答案【小问1详解】,令,则,所以的值域为【小问2详解】,即,令,则,即在上有解,当时,m无解;当时,可得,因为,当且仅当时,等号成立,所以.综上,实数m的取值范围为20、(1);(2).【解题分析】(1)由函数的最值求得振幅A,利用周期公式求得,根据五点法求,进而求得解析式;(2)依据正弦函数单调区间,列出不等式,解之即可得到函数的单调递增区间【题目详解】(1)在内函数只取到一个最大值和一个最小值,当时,;当时,,则,函数的最小正周期,则由,可得,则此函数的解析式;(2)由,可得,则函数的单调递增区间为21、(1);(2).【解题分析】(1)若选择①,设代入,根据恒等式的思想可求得,得到的解析式;若选择②,设由,得,由,得出二次函数的对称轴即,再代入,解之可得的解析式;若选择③,设由,得,又恒成立,又,得出二次函数的对称轴解之即可;(2)由(1)知,根据二次函数的对称轴分析出上的单调性,可求得的值域.【题目详解】解:(1)若选择①,设则又因为即解得,又,所以解得,所以的解析式为;若选择②,设由,得,又,所以二次函数的对称轴即,又,所以解得所以的解析式为;若选择③,设由,得,又恒成立,又,所以二次函数的对称轴即,且解得所以的解析式为;(2)由(1)知,所以,因为对称轴所以在上单调递减,在上单调递增,故在上的值域为.【题目点拨】方法点睛:求函数解析式的方法:一.换元法:已知复合函数的解析式,求原函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东外语外贸大学南国商学院《材料测试技术》2023-2024学年第一学期期末试卷
- 广东司法警官职业学院《固体废弃物处理与处置实验》2023-2024学年第一学期期末试卷
- 广东石油化工学院《影视校色》2023-2024学年第一学期期末试卷
- 广东生态工程职业学院《现代家庭教育》2023-2024学年第一学期期末试卷
- 广东轻工职业技术学院《AutoCAD》2023-2024学年第一学期期末试卷
- 一年级数学(上)计算题专项练习集锦
- 2024八年级地理上册专项训练五中国的经济发展习题课件晋教版
- 七年级下册英语教案
- 2025年九年级统编版语文寒假预习 08 九下第六单元课预习
- 【2021届备考】2020年全国各地名校生物试题分类解析汇编:K单元-生态系统与生态环境的保护
- DB13T 2974-2019 信息系统集成服务资费评估指南
- 春节期间施工现场安全方案
- 黑龙江省建筑工程施工质量验收标准DB23-2017
- 自贡鸿鹤化工股份有限公司20万吨离子膜烧碱等量搬迁升级改造项目
- 医院关于成立安全生产领导小组的通知
- 【施工方案】空调百叶施工方案
- ppt模板热烈欢迎领导莅临指导模板课件(15页PPT)
- 领域驱动设计1
- 脑卒中的肠内营养支持
- 电业安全工作规程——电气部分电业安全工作规程
- 6.8相遇问题(课件) 数学四年级下册(共15张PPT)人教版
评论
0/150
提交评论