




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省池州市贵池区2024届高一上数学期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列函数中,图象的一部分如图所示的是()A. B.C. D.2.若两直线与平行,则它们之间的距离为A. B.C. D.3.角的终边落在()A.第一象限 B.第二象限C.第三象限 D.第四象限4.边长为的正四面体的表面积是A. B.C. D.5.已知函数的定义域为,则函数的定义域为()A. B.C. D.6.集合{α|k·180°+45°≤α≤k·180°+90°,k∈Z}中的角α的终边在单位圆中的位置(阴影部分)是()A. B.C. D.7.已知集合,则()A. B.C. D.8.已知两条直线,,且,则满足条件的值为A. B.C.-2 D.29.已知函数,则()A.5 B.2C.0 D.110.下列函数既不是奇函数,也不是偶函数,且在上单调递增是A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.水车在古代是进行灌溉引水的工具,是人类的一项古老的发明,也是人类利用自然和改造自然的象征.如图是一个半径为的水车,以水车的中心为原点,过水车的中心且平行于水平面的直线为轴,建立如图平面直角坐标系,一个水斗从点出发,沿圆周按逆时针方向匀速旋转,且旋转一周用时秒.经过秒后,水斗旋转到点,设点的坐标为,其纵坐标满足,当秒时,___________.12.记为偶函数,是正整数,,对任意实数,满足中的元素不超过两个,且存在实数使中含有两个元素,则的值是__________13.第24届冬季奥林匹克运动会简称“北京—张家口冬奥会”,将于2022.2.4~2022.2.20在中华人民共和国北京市和张家口市联合举行.某公司为迎接冬奥会的到来,设计了一款扇形的纪念品,扇形圆心角为2,弧长为12cm,则扇形的面积为______.14.已知函数,若在区间上的最大值是,则_______;若在区间上单调递增,则的取值范围是___________15.给出如下五个结论:①存在使②函数是偶函数③最小正周期为④若是第一象限的角,且,则⑤函数的图象关于点对称其中正确结论序号为______________16.若函数满足:对任意实数,有且,当时,,则时,________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知角的终边经过点(1)求值;(2)求的值18.已知为的三个内角,向量与向量共线,且角为锐角.(1)求角的大小;(2)求函数的值域.19.已知函数(为常数且)的图象经过点,(1)试求的值;(2)若不等式在时恒成立,求实数的取值范围.20.求解下列问题(1)化简(其中各字母均为正数):;(2)化简并求值:21.如图所示,正四棱锥中,为底面正方形的中心,侧棱与底面所成的角的正切值为(1)若是的中点,求异面直线与所成角的正切值(2)在棱上是否存在一点,使侧面,若存在,试确定点的位置;若不存在,说明理由
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、D【解题分析】根据题意,设,利用函数图象求得,得出函数解析式,再利用诱导公式判断选项即可.【题目详解】由题意,设,由图象知:,所以,所以,因为点在图象上,所以,则,解得,所以函数,即,故选:D2、D【解题分析】根据两直线平行求得值,利用平行线间距离公式求解即可【题目详解】与平行,,即直线为,即故选D【题目点拨】本题考查求平行线间距离.当直线与直线平行时,;平行线间距离公式为,因此两平行直线需满足,3、A【解题分析】由于,所以由终边相同的定义可得结论【题目详解】因为,所以角的终边与角的终边相同,所以角的终边落在第一象限角故选:A4、D【解题分析】∵边长为a的正四面体的表面为4个边长为a正三角形,∴表面积为:4×a=a2,故选D5、C【解题分析】解不等式即得函数的定义域.【题目详解】由题得,解之得,所以函数的定义域为.故答案为C【题目点拨】本题主要考查复合函数的定义域的求法,考查具体函数的定义域的求法和对数函数的单调性,意在考查学生对这些知识的掌握水平和分析推理能力.6、C【解题分析】利用赋值法来求得正确答案.【题目详解】当k=2n,n∈Z时,n360°+45°≤α≤n360°+90°,n∈Z;当k=2n+1,n∈Z时,n360°+225°≤α≤n360°+270°,n∈Z.故选:C7、D【解题分析】由交集的定义求解即可【题目详解】,由题意,作数轴如图:故,故选:D.8、C【解题分析】根据两条直线l1:x+2ay﹣1=0,l2:x﹣4y=0,且l1∥l2,可得求得a=﹣2,故选C9、C【解题分析】由分段函数,选择计算【题目详解】由题意可得.故选:C.【题目点拨】本题考查分段函数的求值,属于简单题10、C【解题分析】是偶函数,是奇函数,和既不是奇函数也不是偶函数,在上是减函数,是增函数,故选C二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】求出关于的函数解析式,将代入函数解析式,求出的值,可得出点的坐标,进而可求得的值.【题目详解】由题意可知,,函数的最小正周期为,则,所以,,点对应,,则,可得,,,故,当时,,因为,故点不与点重合,此时点,则.故答案为:.12、4、5、6【解题分析】根据偶函数,是正整数,推断出的取值范围,相邻的两个的距离是,依照题意列不等式组,求出的值【题目详解】由题意得.∵为偶函数,是正整数,∴,∵对任意实数,满足中的元素不超过两个,且存在实数使中含有两个元素,∴中任意相邻两个元素的间隔必小于1,任意相邻的三个元素的间隔之和必大于1∴,解得,又,∴.答案:【题目点拨】本题考查了正弦函数的奇偶性和周期性,以及根据集合的运算关系,求参数的值,关键是理解的意义,强调抽象思维与灵活应变的能力13、36【解题分析】首先根据弧长公式求出扇形的半径,再根据扇形的面积公式计算可得;【题目详解】解:依题意、cm,所以,即cm,所以;故答案为:14、①.②.【解题分析】根据定义域得,再得到取最大值的条件求解即可;先得到一般性的单调增区间,再根据集合之间的关系求解.【题目详解】因为,且在此区间上的最大值是,所以因为f(x)max=2tan=,所以tan==,即ω=由,得令,得,即在区间上单调递增又因在区间上单调递增,所以<,即所以的取值范围是故答案为:1,15、②③【解题分析】利用正弦函数的图像与性质,逐一判断即可.【题目详解】对于①,,,故错误;对于②,,显然为偶函数,故正确;对于③,∵y=sin(2x)的最小正周期为π,∴y=|sin(2x)|最小正周期为.故正确;对于④,令α,β,满足,但,故错误;对于⑤,令则故对称中心为,故错误.故答案为:②③【题目点拨】本题主要考查三角函数图象与性质,考查辅助角公式和诱导公式、正弦函数的图象的对称性和单调性,属于基础题16、【解题分析】由,可知.所以函数是周期为4的周期函数.,时,..对任意实数,有,可知函数关于点(1,0)中心对称,所以,又.所以.综上可知,时,.故答案为.点睛:抽象函数的周期性:(1)若,则函数周期为T;(2)若,则函数周期为(3)若,则函数的周期为;(4)若,则函数的周期为.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,;(2)【解题分析】(1)直接利用三角函数的坐标定义求解;(2)化简,即得解.【小问1详解】解:,有,,;【小问2详解】解:,将代入,可得18、(1);(2).【解题分析】(1)根据平行向量的坐标关系即可得到(2﹣2sinA)(1+sinA)﹣(sinA+cosA)(sinA﹣cosA)=0,这样即可解出tan2A,结合A为锐角,即可求出A;(2)由B+C便得C,从而得到,利用二倍角的余弦公式及两角差的正余弦公式即可化简原函数y=1+sin(B),由前面知0,从而可得到B的范围,结合正弦函数的图象即可得到的范围,即可得出原函数的值域【题目详解】(1)由m∥n,得(2﹣2sinA)(1+sinA)﹣(sinA+cosA)(sinA﹣cosA)=0,得到2(1-sin2A)-sin2A+cos2A=0,所以2cos2A-sin2A+cos2A=0,即3cos2A-sin2A=0得,所以且为锐角,则.(2)由(1)知,,即,=,所以,=,且,则,所以,则,即函数的值域为.【题目点拨】本题考查平行向量的坐标的关系,同角基本关系及向量数量积的计算公式,考查了利用正弦函数的图象求最值及二倍角的余弦公式,两角差的正余弦公式等,属于综合题19、(1);(2).【解题分析】(1)利用函数图像上的两个点的坐标列方程组,解方程组求得的值.(2)将原不等式分离常数,利用函数的单调性,求出的取值范围.【题目详解】(1)由于函数图像经过,,所以,解得,所以.(2)原不等式为,即在时恒成立,而在时单调递减,故在时有最小值为,故.所以实数的取值范围是.【题目点拨】本小题主要考查待定系数法求函数的解析式,考查不等式恒成立问题的求解策略,考查函数的单调性以及最值,属于中档题.20、(1)(2)【解题分析】(1)结合指数运算求得正确答案.(2)结合对数运算求得正确答案.【小问1详解】原式【小问2详解】原式21、(1);(2)为四等分点(靠近点A);答案见解析【解题分析】(1)取中点,连,,则可得为二面角的平面角,为侧棱与底面所成的角,连接,则,从而可得或其补角为异面直线与所成的角,进而可求得答案;(2)延长交于,取中点,连、,由线面垂直的判定可得平面,则平面平面,再由线面垂直的判定可得平面,取的中点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 5-12序列信号发生器2-m序列信号发生器的分析
- 1-7码制-BCD的加减法运算
- 2025年北京海淀区中考一模英语试卷试题(含答案详解)
- 食品企业产品检验管理制度
- 上海行健职业学院《创新创业基础(社会实践)》2023-2024学年第二学期期末试卷
- 天津渤海职业技术学院《能源与环境》2023-2024学年第二学期期末试卷
- 四川省射洪县2024-2025学年初三下学期第一次联合模拟考试数学试题含解析
- 国开2025年《汉语通论》形成性考核1-4答案
- 江苏省无锡江阴市要塞片2025届初三第一次模拟(5月)物理试题含解析
- 江汉大学《试验设计方法》2023-2024学年第一学期期末试卷
- 2025年刑法模拟检测试卷(罪名认定与刑罚适用)
- 健康厨房-家庭饮食指南
- 初中生物重要识图填空速记54个-2025年中考生物一轮复习知识清单
- T-SCCX A 0010-2024 T-CQXS A 0001-2024 信息技术应用创新项目建设规范
- 合作合同范本 英文
- 四年级数学上册口算题1000道
- 2025年中国腰果行业市场深度分析及发展前景预测报告
- 工业机器人集成应用(ABB) 高级 课件 1.2.3 PLC设备选型方法与工作站PLC选型
- 《危险作业审批制度》知识培训
- 新国际物流知识培训课件
- 关节置换感染预防与控制
评论
0/150
提交评论