版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省宣城市第十三中学2024届高一数学第一学期期末统考模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若直线与互相平行,则()A.4 B.C. D.2.若函数在区间上存在零点,则实数的取值范围是A. B.C. D.3.在四面体的四个面中,是直角三角形的至多有A.0个 B.2个C.3个 D.4个4.已知,若,则x的取值范围为()A. B.C. D.5.设函数,则当时,的取值为A.-4 B.4C.-10 D.106.函数,的最小值是()A. B.C. D.7.已知函数为定义在上的偶函数,在上单调递减,并且,则实数的取值范围是()A. B.C. D.8.已知,,,则a、b、c的大小关系为()A. B.C. D.9.已知直线:与直线:,则()A.,平行 B.,垂直C.,关于轴对称 D.,关于轴对称10.已知,则角的终边所在的象限是()A.第一象限 B.第二象限C.第三象限 D.第四象限二、填空题:本大题共6小题,每小题5分,共30分。11.某工厂生产的产品中有正品和次品,其中正品重/个,次品重/个.现有10袋产品(每袋装100个),其中1袋装的全为次品,其余9袋装的全为正品.将这10袋产品从1~10编号,从第i号袋中取出i个产品,则共抽出______个产品;将取出的产品一起称重,称出其重量,则次品袋的编号为______.12.在平面直角坐标系中,正三角形ABC的边BC所在直线的斜率是0,则AC,AB所在直线的斜率之和为________13.已知集合,若,则_______.14.已知函数,若,则实数的取值范围是__________.15.如图所示,弧田是由圆弧和其所对弦围成的图形,若弧田的弧长为,弧所在的圆的半径为4,则弧田的面积是___________.16.定义域为上的函数满足,且当时,,若,则a的取值范围是______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数的部分图象如图所示.(1)求函数的解析式:(2)将函数的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向右平移个单位长度,得到函数的图象,求在上的值域18.设函数,(1)根据定义证明在区间上单调递增;(2)判断并证明的奇偶性;(3)解关于x的不等式.19.某同学作函数f(x)=Asin(x+)在一个周期内的简图时,列表并填入了部分数据,如下表:0-3(1)请将上表数据补充完整,并求出f(x)的解析式;(2)若f(x)在区间(m,0)内是单调函数,求实数m的最小值.20.已知函数为偶函数(1)求实数的值;(2)记集合,,判断与的关系;(3)当时,若函数值域为,求的值.21.已知函数是定义域为的奇函数.(1)求实数的值;(2)若,不等式在上恒成立,求实数的取值范围;(3)若,且函数在上最小值为,求的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】根据直线平行,即可求解.【题目详解】因为直线与互相平行,所以,得当时,两直线重合,不符合题意;当时,符合题意故选:B.2、C【解题分析】由函数的零点的判定定理可得f(﹣1)f(1)<0,解不等式求得实数a的取值范围【题目详解】由题,函数f(x)=ax+1单调,又在区间(﹣1,1)上存在一个零点,则f(﹣1)f(1)<0,即(1﹣a)(1+a)<0,解得a<﹣1或a>1故选C【题目点拨】本题主要考查函数的零点的判定定理的应用,属于基础题3、D【解题分析】作出图形,能够做到PA与AB,AC垂直,BC与BA,BP垂直,得解【题目详解】如图,PA⊥平面ABC,CB⊥AB,则CB⊥BP,故四个面均为直角三角形故选D【题目点拨】本题考查了四面体的结构与特征,考查了线面的垂直关系,属于基础题.4、C【解题分析】首先判断函数的单调性和定义域,再解抽象不等式.【题目详解】函数的定义域需满足,解得:,并且在区间上,函数单调递增,且,所以,即,解得:或.故选:C【题目点拨】关键点点睛:本题的关键是判断函数的单调性和定义域,尤其是容易忽略函数的定义域.5、C【解题分析】详解】令,则,选C.6、D【解题分析】利用基本不等式可求得的最小值.【题目详解】,当且仅当时,即当时,等号成立,故函数的最小值为.故选:D.7、D【解题分析】利用函数的奇偶性得到,再解不等式组即得解.【题目详解】解:由题得.因为在上单调递减,并且,所以,所以或.故选:D8、A【解题分析】利用指数函数、对数函数、三角函数的知识判断出a、b、c的范围即可.【题目详解】因为,,所以故选:A9、D【解题分析】根据题意,可知两条直线都经过轴上的同一点,且两条直线的斜率互为相反数,即可得两条直线的对称关系.【题目详解】因为,都经过轴上的点,且斜率互为相反数,所以,关于轴对称.故选:D【题目点拨】本题考查了两条直线的位置关系,关于轴对称的直线方程特征,属于基础题.10、C【解题分析】化,可知角的终边所在的象限.【题目详解】,将逆时针旋转即可得到,角的终边在第三象限.故选:C【题目点拨】本题主要考查了象限角的概念,属于容易题.二、填空题:本大题共6小题,每小题5分,共30分。11、①.55②.8【解题分析】将这10袋产品从编号,从第号袋中取出个产品,2,,,则共抽出个产品;将取出的产品一起称重,称出其重量,得到取出的次品的个数为8个,进而能求出次品袋的编号【题目详解】某工厂生产的产品中有正品和次品,其中正品重个,次品重个现有10袋产品(每袋装100个),其中1袋装的全为次品,其余9袋装的全为正品将这10袋产品从编号,从第号袋中取出个产品,2,,,则共抽出个产品;将取出的产品一起称重,称出其重量,取出的次品的个数为8个,则次品袋的编号为8故答案为:55;812、0【解题分析】由于正三角形的内角都为,且边BC所在直线的斜率是0,不妨设边AB所在直线的倾斜角为,则斜率为,则边AC所在直线的倾斜角为,斜率为,所以AC,AB所在直线的斜率之和为13、【解题分析】根据求得,由此求得.【题目详解】由于,所以,所以.故答案为:14、【解题分析】先确定函数单调性,再根据单调性化简不等式,最后解一元二次不等式得结果.【题目详解】在上单调递增,在上单调递增,且在R上单调递增因此由得故答案为:【题目点拨】本题考查根据函数单调性解不等式,考查基本分析求解能力,属中档题.15、【解题分析】根据题意得,进而根据扇形面积公式计算即可得答案.【题目详解】解:根据题意,只需计算图中阴影部分的面积,设,因为弧田的弧长为,弧所在的圆的半径为4,所以,所以阴影部分的面积为所以弧田的面积是.故答案为:16、【解题分析】根据,可得函数图象关于直线对称,当时,,可设,根据,即可求解;【题目详解】解:,的函数图象关于直线对称,函数关于y轴对称,当时,,那么时,,可得,由,得解得:;故答案为.【题目点拨】本题考查了函数的性质的应用及不等式的求解,属于中档题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】(1)由函数图象顶点求出,再根据周期求出,根据点五点中的求出,即可得函数解析式;(2)先根据平移得出,由,得出,再根据三角函数图形及性质即可求出值域【题目详解】(1)由题设图象可知,∵周期,又,∴,∵过点,∴,即,∴,即∵,∴,故函数的解析式为;(2)由题意可知,∵,∴,∴,故,∴在上的值域为【题目点拨】本题主要考查由的部分图象求解析式,以及求三角函数的值域的应用,属于中档题.18、(1)证明见解析(2)奇函数,证明见解析(3)【解题分析】(1)根据函数单调性的定义,准确运算,即可求解;(2)根据函数奇偶性的定义,准确化简,即可求解;(3)根据函数的奇偶性和单调性,把不等式转化为,得到,即可求解【小问1详解】证明:,且,则,因为,,,所以,即,所以在上单调递增【小问2详解】证明:由,即,解得,即的定义域为,对于任意,函数,则,即,所以是奇函数.【小问3详解】解:由(1)知,函数在上单调递增,又因为x是增函数,所以是上的增函数,由,可得,由,可得,因为奇函数,所以,所以原不等式可化为,则,解得,所以原不等式的解集为19、(1)表格见解析,(2)【解题分析】(1)由题意,根据五点法作图,利用正弦函数的性质,补充表格,并求出函数的解析式(2)由题意利用正弦函数的单调性,求出实数的最小值【小问1详解】解:作函数,,的简图时,根据表格可得,,,结合五点法作图,,,故函数的解析式为列表如下:00300【小问2详解】解:因为,所以,若在区间内是单调函数,则,且,解得,故实数的最小值为20、(1);(2);(3).【解题分析】(1)由恒成立,可得恒成立,进而得实数的值;(2)化简集合,得;(3)先判定的单调性,再求出时的范围,与等价即可求出实数的值.试题解析:(1)为偶函数,.(2)由(1)可知:,当时,;当时,.,.(3).上单调递增,,为的两个根,又由题意可知:,且.考点:1、函数的奇偶性及值域;2、对数的运算.21、(1)0(2)(3)2.【解题分析】(1)是定义域为的奇函数,由,得到的值;(2)根据得到的范围,从而得到的单调性,结合的奇偶性,得到将不等式转化为在上恒成立,通过得到的范围;(3)由得到,从而得到解析式,令,得到,动轴定区间分类讨论,根据最小值为,得到的值.【题目详解】(1)因为是定义域为的奇函数,所以,所以,所以,经检验,当时,为上的奇函数(2)由(1)知:,因为,所以,又且,所
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度股权投资合同(2024版)2篇
- 2024年专用电子商务平台搭建及运营合同
- 二零二四年度房地产项目营销推广合同
- 2024APP客户端开发合同
- 房屋财产保险合同(2024版)
- 2024年商业招商代理协议样本版B版
- 2024年劳务分包公司安装作业协议样式版B版
- 2024工程项目物流协议样本版B版
- 2024年专业木材加工厂租赁协议详规版B版
- 2024年专业人力资源机构招聘服务协议版B版
- 新苏教版科学六年级下册全册教案(含反思)
- 实验五:制作洋葱表皮切片
- 中国体育发展史课件
- 智慧产业园区解决方案
- 血管活性药配置和使用
- 2021EPC总承包各专业配合以及项目组织架构
- 幼儿园课件《小蝌蚪找妈妈》
- (完整版)GIS结构课件
- YY∕T 1784-2021 血气分析仪
- 苏教版 三年级上册数学课件-7 分数的初步认识(共14张PPT)
- 北京市中小学教师岗位考核登记表(表样)
评论
0/150
提交评论