反比例函数的应用“衡水赛”一等奖_第1页
反比例函数的应用“衡水赛”一等奖_第2页
反比例函数的应用“衡水赛”一等奖_第3页
反比例函数的应用“衡水赛”一等奖_第4页
反比例函数的应用“衡水赛”一等奖_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

反比例函数的应用2.反比例函数图象是什么?当K>0时,两支曲线分别位于第一、三象限内,在每一象限内,y随x的增大而减少;当K<0时,两支曲线分别位于第二、四象限内,在每一象限内,y随x的增大而增大.1.什么是反比例函数?3.反比例函数图象有哪些性质?是双曲线一般地,形如y=—(k是常数,k=0)的函数叫做反比例函数。kx挑战记忆:小测:1.若点(2,-4)在反比例函数的图象上,则k=____.2.若反比例函数的图象在第二、四象限,则k的取值范围是____________.3.反比例函数的图象既是______对称图形,又是______对称图形

4.函数的图象上有三点(-3,y1),(-1,y2),(2,y3)则函数值y1、y2、y3的大小关系是_______________;5.甲乙两地相距100km,一辆汽车从甲地开往乙地,把汽车到达乙地所用的时间y(h)表示为汽车的平均速度x(km/h)的函数,则这个函数的图象大致是()C在实际问题中图象就可能只有一支.K〈-1-8轴中心y3<y1<y2在这段高速公路上,设汽车行驶速度为v(km/h),时间为t(h).写出v与t之间的函数关系式.某汽车开车用了25min匀速通过了这段高速公路,请你判断这辆汽车是否超速,并说明理由.某天,由于天气原因,汽车通过这段高速公路时,要求行驶速度不得超过75km/h,此时,汽车通过该路段最少要用多长时间?

厨师将一定质量的面团做成粗细一致的拉面时,面条的总长度y(m)是面条横截面积S(mm2)的反比例函数,其图像经过A(4,32),B(m,80)两点(如图27-3-3所示).1、写出y与S的函数关系式.2、求出m的值,并解释m的实际意义.某科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地.为了安全迅速通过这片湿地,他们沿着前进路线铺垫了若干木板,构筑了一条临时通道,从而顺利完成了任务.你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时,随着木板面积S(m2)的变化,人和木板对地面的压强P(Pa)将如何变化?探究:如果人和木板对湿地地面的压力合计600N,那么

(1)用含S的代数式表示P,P是S的反比例函数吗?为什么?P是S的反比例函数.解:探究:(2)当木板面积为0.2m2时,压强是多少?解:当S=0.2m2时,P=600/0.2=3000(Pa)某科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地.为了安全迅速通过这片湿地,他们沿着前进路线铺垫了若干木板,构筑了一条临时通道,从而顺利完成了任务.你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时,随着木板面积S(m2)的变化,人和木板对地面的压强P(Pa)将如何变化?如果人和木板对湿地地面的压力合计600N,那么探究:如果人和木板对湿地地面的压力合计600N,那么

(3)如果要求压强不超过6000Pa,木板面积至少要多大?解:当P≤6000时,S≥600/6000=0.1(m2)所以木板面积至少要0.1m2.某科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地.为了安全迅速通过这片湿地,他们沿着前进路线铺垫了若干木板,构筑了一条临时通道,从而顺利完成了任务.你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时,随着木板面积S(m2)的变化,人和木板对地面的压强P(Pa)将如何变化?某科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地.为了安全迅速通过这片湿地,他们沿着前进路线铺垫了若干木板,构筑了一条临时通道,从而顺利完成了任务.你能解释他们这样做的道理吗?当人和木板对湿地的压力一定时,随着木板面积S(m2)的变化,人和木板对地面的压强P(Pa)将如何变化?探究:如果人和木板对湿地地面的压力合计600N,那么

(4)在直角坐标系,作出相应函数的图象.注意:只需在第一象限作出函数的图象.因为S>0.(5)请利用图象对(2)和(3)作出直观解释,并与同伴交流.解:问题(2)是已知图象上的某点的横坐标为0.2,求该点的纵坐标;问题(3)是已知图象上点的纵坐标不大于6000,求这些点所处位置及它们横坐标的取值范围.实际上这些点都在直线P=6000下方的图象上.(2)当木板面积为0.2m2时,压强是多少?(3)如果要求压强不超过6000Pa,木板面积至少要多大?做一做(1)蓄电池的电压是多少?你能写出这一函数的表达式吗?解:因为电流I与电压U之间的关系为IR=U(U为定值),把图象上的点A的坐标(9,4)代入,得U=36.所以蓄电池的电压U=36V.这一函数的表达式为:(2)完成下表,并回答问题:如果以此蓄电池为电源的用电器电流不得超过10A,那么用电器的可变电阻应控制在什么范围内?解:当I≤10A时,解得R≥3.6(Ω).所以可变电阻应不小3.6Ω.1、蓄电池的电压为定值,使用此电源时,电流I(A)与电阻R()之间的函数关系如图所示R()I(A)34546789101297.2636/74.53.62.如图,正比例函数y=k1x的图象与反比例函数y=k2/x的图象相交于A、B两点,其中点A的坐标为(1)分别写出这两个函数的表达式;(2)你能求出点B的坐标吗?

你是怎样求的?与同伴交流?解:(1)把A点坐标分别代入y=k1x,和y=k2/x,解得k1=2.k2=6所以所求的函数表达式为:y=2x,和y=6/x.xyABO2.如图,正比例函数y=k1x的图象与反比例函数y=k2/x的图象相交于A、B两点,其中点A的坐标为(1)分别写出这两个函数的表达式;(2)你能求出点B的坐标吗?

你是怎样求的?与同伴交流?解:(2)B点的坐标是两个函数组成的方程组的另一个解.解得x=xyABO随堂练习:1.某蓄水池的排水管每时排水8m3,6h可将满池水全部排空.(1)蓄水池的容积是多少?解:蓄水池的容积为:8×6=48(m3).(2)如果增加排水管,使每时的排水量达到Q(m3),那么将满池水排空所需的时间t(h)将如何变化?答:此时所需时间t(h)将减少.(3)写出t与Q之间的函数关系式;解:t与Q之间的函数关系式为:随堂练习:1.某蓄水池的排水管每时排水8m3,6h可将满池水全部排空.(4)如果准备在5h内将满池水排空,那么每时的排水量至少为多少?解:当t=5h时,Q=48/5=9.6m3.所以每时的排水量至少为9.6m3.(5)已知排水管的最大排水量为每时12m3,那么最少多长时间可将满池水全部排空?解:当Q=12(m3)时,t=48/12=4(h).所以最少需5h可将满池水全部排空.(6)画出函数图象,根据图象请对问题(4)和(5)作出直观解释,并和同伴交流.中考题为了预防“甲流”,某校对教室采用药熏消毒法进行消毒。已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧完后,y与x成反比例。现在测得药物8min燃毕,此时室内空气中每立方米含药量6mg,请根据题中所提供信息,解答下列问题:(1)药物燃烧时,y关于x的函数关系式

,自变量x的取值范围

,药物燃烧后y关于x的函数关系式

;y(mg)x(min)o86(2)研究表明,每立方米的含药量低于1.6mg时,学生方可进教室,那么从消毒开始,至少需要经过

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论