![2024届云南省文山州马关县一中高一上数学期末教学质量检测试题含解析_第1页](http://file4.renrendoc.com/view/36e685c8153d7447b41a2d9323c7eff4/36e685c8153d7447b41a2d9323c7eff41.gif)
![2024届云南省文山州马关县一中高一上数学期末教学质量检测试题含解析_第2页](http://file4.renrendoc.com/view/36e685c8153d7447b41a2d9323c7eff4/36e685c8153d7447b41a2d9323c7eff42.gif)
![2024届云南省文山州马关县一中高一上数学期末教学质量检测试题含解析_第3页](http://file4.renrendoc.com/view/36e685c8153d7447b41a2d9323c7eff4/36e685c8153d7447b41a2d9323c7eff43.gif)
![2024届云南省文山州马关县一中高一上数学期末教学质量检测试题含解析_第4页](http://file4.renrendoc.com/view/36e685c8153d7447b41a2d9323c7eff4/36e685c8153d7447b41a2d9323c7eff44.gif)
![2024届云南省文山州马关县一中高一上数学期末教学质量检测试题含解析_第5页](http://file4.renrendoc.com/view/36e685c8153d7447b41a2d9323c7eff4/36e685c8153d7447b41a2d9323c7eff45.gif)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届云南省文山州马关县一中高一上数学期末教学质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.在中,,,则的值为A. B.C.2 D.32.下列函数中,满足对定义域内任意实数,恒有的函数的个数为()①②③④A.1个 B.2个C.3个 D.4个3.,则A.1 B.2C.26 D.104.已知函数,若关于的方程有8个不等的实数根,则的取值范围是A. B.C. D.5.集合{α|k·180°+45°≤α≤k·180°+90°,k∈Z}中的角α的终边在单位圆中的位置(阴影部分)是()A. B.C. D.6.下列函数在定义域内为奇函数,且有最小值的是A. B.C. D.7.函数y=1+x+的部分图象大致为()A. B.C. D.8.设是定义在上的奇函数,且当时,,则()A. B.C. D.9.已知定义在R上的函数的图象是连续不断的,且有如下对应值表:x123453那么函数一定存在零点的区间是()A. B.C. D.10.已知,方程有三个实根,若,则实数A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知角的终边过点,则___________.12.设函数即_____13.设函数是定义在上的奇函数,且,则___________14.设函数.则函数的值域为___________;若方程在区间上的四个根分别为,,,,则___________.15.若函数关于对称,则常数的最大负值为________16.函数的定义域为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知二次函数的图象关于直线对称,且关于x的方程有两个相等的实数根(1)求函数的值域;(2)若函数(且)在上有最小值﹣2,最大值7,求a的值18.已知函数.(1)判断函数的奇偶性,并说明理由;(2)用函数单调性的定义证明函数在上是减函数19.已知函数(Ⅰ)求函数的单调递减区间;(Ⅱ)若函数的图象向右平移个单位长度后,所得的图象对应的函数为,且当,时,,求的值20.如图,点,,在函数的图象上(1)求函数的解析式;(2)若函数图象上的两点,满足,,求四边形OMQN面积的最大值21.已知函数,(1)试比较与的大小关系,并给出证明;(2)解方程:;(3)求函数,(是实数)的最小值
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】如图,,又,∴,故.选A2、A【解题分析】根据因为函数满足对定义域内任意实数,恒有,可得函数的图象是“下凸”,然后由函数图象判断.【题目详解】因为函数满足对定义域内任意实数,恒有,所以函数的图象是“下凸”,分别作出函数①②③④的图象,由图象知,满足条件的函数有③一个,故选:A3、B【解题分析】根据题意,由函数的解析式可得,进而计算可得答案.【题目详解】根据题意,,则;故选B.【题目点拨】本题考查分段函数函数值的计算,注意分析函数的解析式.解决分段函数求值问题的策略:(1)在求分段函数的值f(x0)时,一定要首先判断x0属于定义域的哪个子集,然后再代入相应的关系式;(2)分段函数是指自变量在不同的取值范围内,其对应法则也不同的函数,分段函数是一个函数,而不是多个函数;分段函数的定义域是各段定义域的并集,值域是各段值域的并集,故解分段函数时要分段解决;(3)求f(f(f(a)))的值时,一般要遵循由里向外逐层计算的原则.4、D【解题分析】画出函数的图象,利用函数的图象,判断的范围,然后利用二次函数的性质求解的范围【题目详解】解:函数,的图象如图:关于的方程有8个不等的实数根,必须有两个不相等的实数根且两根位于之间,由函数图象可知,.令,方程化为:,,,开口向下,对称轴为:,可知:的最大值为:,的最小值为:2故选:【题目点拨】本题考查函数与方程的应用,函数的零点个数的判断与应用,考查数形结合以及计算能力,属于中档题5、C【解题分析】利用赋值法来求得正确答案.【题目详解】当k=2n,n∈Z时,n360°+45°≤α≤n360°+90°,n∈Z;当k=2n+1,n∈Z时,n360°+225°≤α≤n360°+270°,n∈Z.故选:C6、D【解题分析】选项A中,函数为奇函数,但无最小值,故满足题意选项B中,函数为偶函数,不合题意选项C中,函数为奇函数,但无最小值,故不合题意选项D中,函数,为奇函数,且有最小值,符合题意选D7、D【解题分析】由题意比较函数的性质及函数图象的特征,逐项判断即可得解.【题目详解】当x=1时,y=1+1+sin1=2+sin1>2,排除A、C;当x→+∞时,y→+∞,排除B.故选:D.【题目点拨】本题考查了函数图象的识别,抓住函数图象的差异是解题关键,属于基础题.8、D【解题分析】根据奇函数的性质求函数值即可.【题目详解】故选:D9、B【解题分析】利用零点存在性定理判断即可.【题目详解】则函数一定存在零点的区间是故选:B【题目点拨】本题主要考查了利用零点存在性定理判断零点所在区间,属于基础题.10、B【解题分析】判断f(x)与2的大小,化简方程求出x1、x2、x3的值,根据得x3﹣x2=2(x2﹣x1)得出a的值【题目详解】由1﹣x2≥0得x2≤1,则﹣1≤x≤1,,当x<0时,由f(x)=2,即﹣2x=2得x2=1﹣x2,即2x2=1,x2,则x,①当﹣1≤x时,有f(x)≥2,原方程可化为f(x)+2f(x)﹣22ax﹣4=0,即﹣4x﹣2ax﹣4=0,得x,由﹣1解得:0≤a≤22②当x≤1时,f(x)<2,原方程可化为42ax﹣4=0,化简得(a2+4)x2+4ax=0,解得x=0,或x,又0≤a≤22,∴0∴x1,x2,x3=0由x3﹣x2=2(x2﹣x1),得2(),解得a(舍)或a因此,所求实数a故选B【题目点拨】本题主要考查函数与方程的应用,根据分段函数的表达式结合绝对值的应用,确定三个根x1、x2、x3的值是解决本题的关键.综合性较强,难度较大二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据角终边所过的点,求得三角函数,即可求解.【题目详解】因为角的终边过点则所以故答案为:【题目点拨】本题考查了已知终边所过的点,求三角函数的方法,属于基础题.12、-1【解题分析】结合函数的解析式求解函数值即可.【题目详解】由题意可得:,则.【题目点拨】求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值13、【解题分析】先由已知条件求出的函数关系式,也就是当时的函数关系式,再求得,然后求的值即可【题目详解】解:当时,,∴,∵函数是定义在上的奇函数,∴,∴,即由题意得,∴故答案为:【题目点拨】此题考查了分段函数求值,考查了奇函数的性质,属于基础题.14、①.②.【解题分析】根据二倍角公式,化简可得,分别讨论位于第一、二、三、四象限,结合辅助角公式,可得的解析式,根据的范围,即可得值域;作出图象与,结合图象的对称性,可得答案.【题目详解】由题意得当时,即时,,又,所以;当时,即时,,又,所以;当时,即时,,又,所以;当时,即时,,又,所以;综上:函数的值域为.因为,所以,所以,作出图象与图象,如下如所示由图象可得,所以故答案为:;15、【解题分析】根据函数的对称性,利用,建立方程进行求解即可【题目详解】若关于对称,则,即,即,则,则,,当时,,故答案为:16、且【解题分析】由根式函数和分式函数的定义域求解.【题目详解】由,解得且,所以函数的定义域为且故答案为:且三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)或【解题分析】(1)根据对称轴以及判别式等于得出,再由基本不等式得出函数的值域;(2)利用换元法结合对数函数以及二次函数的单调性得出a的值【小问1详解】依题意得,因为,所以,解得,,故,,当时,,当且仅当,即时,等号成立当时,,当且仅当,即时,等号成立故的值域为【小问2详解】,令,则①当时,,因,所以,解得因为,所以,解得或(舍去)②当时,,因为,所以,解得,解得或(舍去)综上,a的值为或18、(1)偶函数,证明见解析;(2)证明见解析.【解题分析】(1)根据奇偶性的定义判断函数的奇偶性,(2)利用函数单调性的定义证明,先取值,再作差变形,判断符号,然后得出结论【题目详解】解:(1)根据题意,函数为偶函数,证明:,其定义域为,有,则是偶函数;(2)证明:设,则,又由,则,必有,故在上是减函数19、(Ⅰ),;(Ⅱ).【解题分析】Ⅰ由三角函数的单调性可得函数的单调递减区间;Ⅱ由三角函数图象的平移得的解析式,由诱导公式及角的范围得:,所以,代入运算得解【题目详解】Ⅰ由,解得:,即函数的单调递减区间为:,;Ⅱ将函数的图象向右平移个单位长度后,所得的图象对应的函数为,得,又,即,由,,得:,,由诱导公式可得,所以,所以,【题目点拨】本题考查了三角函数的单调性及三角函数图象的平移变换,涉及到诱导公式的应用及三角函数求值问题,属于中档题20、(1)(2)【解题分析】(1)由图可求出,从而求得,由图可知函数处取得最小值,从而可求出的值,再将点的坐标代入函数中可求出,进而可求出函数的解析式,(2)由题意求得所以,,而四边形OMQN的面积为S,则,代入化简利用三角函数的性质可求得结果【小问1详解】由图可知的周期T满足,得又因为,所以,解得又在处取得最小值,即,得,所以,,解得,因为,所以.由,得,所以综上,【小问2详解】当时,,所以.由知此时记四边形OMQN的面积为S,则又因为,所以,所以当,即时,取得最大值所以四边形OMQN面积的最大值是21、(1)(2)或.(3)【解题分析】(1)与作差,配方后即可得;(2)原方程化为,设,可得,进而可得结果;(3)令,则,函数可化为,利用二次函数的性质分情况讨论,分别求出两段函数的最小值,比较大小后可得各种情况下函数,(是实数)的最小值.试题解析:(1)因为,所以(2)由,得,令,则,故原方程可化为,解得,或(舍去),则,即,解得或,所以或(3)令,则,函数可化为①若,当时,,对称轴,此时;当时,,对称轴,此时,故,②若,当,,对称轴,此时;当时,,对称轴,此时,故,③若,当时,,对称轴,此时;当时,,对称轴,此时,故,;④若,当时,,对称轴,此时;当时,,对称轴,此时,则时,,时,,故,⑤
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度数据中心施工安全协议书范本
- 2025年度金融信息服务平台合作协议
- 2025年四氯口化咯项目可行性研究报告
- 2025年护肤品美容品保健品行业深度研究分析报告
- 2025年度中小企业知识产权质押贷款合同协议正规范本
- 2025年中国番泻叶市场评估分析及发展前景调研战略研究报告
- 2025年中国干洗店行业发展趋势预测及投资战略咨询报告
- 2025年度环保项目经营权质押合同样本
- 2025年度建筑装修工程合同纠纷处理协议
- 2025年机房环境工程市场分析现状
- 苏州2025年江苏苏州太仓市高新区(科教新城娄东街道陆渡街道)招聘司法协理员(编外用工)10人笔试历年参考题库附带答案详解
- 幼儿园课件:健康教案
- 2025至2031年中国助眠床垫行业投资前景及策略咨询研究报告
- 物业服务和后勤运输保障服务总体服务方案
- 2025四川中烟招聘高频重点提升(共500题)附带答案详解
- 2025年极兔速递有限公司招聘笔试参考题库含答案解析
- 2025年北京市文化和旅游局系统事业单位招聘101人笔试高频重点提升(共500题)附带答案详解
- 2025年中储棉总公司招聘笔试参考题库含答案解析
- 2024-2030年中国科技孵化器产业发展现状及投融资战略分析报告
- 中学学校2024-2025学年第二学期教学工作计划
- 人大代表小组活动计划人大代表活动方案
评论
0/150
提交评论