陕西省延安市宝塔区第四中学2024届高一上数学期末质量跟踪监视模拟试题含解析_第1页
陕西省延安市宝塔区第四中学2024届高一上数学期末质量跟踪监视模拟试题含解析_第2页
陕西省延安市宝塔区第四中学2024届高一上数学期末质量跟踪监视模拟试题含解析_第3页
陕西省延安市宝塔区第四中学2024届高一上数学期末质量跟踪监视模拟试题含解析_第4页
陕西省延安市宝塔区第四中学2024届高一上数学期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省延安市宝塔区第四中学2024届高一上数学期末质量跟踪监视模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.下列命题中正确的个数是()①两条直线,没有公共点,那么,是异面直线②若直线上有无数个点不在平面内,则③空间中如果两个角的两边分别对应平行,那么这两个角相等或互补④若直线与平面平行,则直线与平面内的任意一条直线都没有公共点A. B.C. D.2.关于,,下列叙述正确的是()A.若,则是的整数倍B.函数的图象关于点对称C.函数的图象关于直线对称D.函数在区间上为增函数.3.函数的图象可由函数的图像()A.向左平移个单位得到 B.向右平移个单位得到C.向左平移个单位得到 D.向右平移个单位得到4.如果函数对任意的实数x,都有,且当时,,那么函数在的最大值为A.1 B.2C.3 D.45.关于的不等式的解集为,,,则关于的不等式的解集为()A. B.C. D.6.命题,则命题p的否定是()A. B.C. D.7.若函数在单调递增,则实数a的取值范围为()A. B.C. D.8.已知集合,,则A. B.C. D.9.已知,,,是球的球面上的四个点,平面,,,则该球的半径为()A. B.C. D.10.下列函数中,与函数的定义域与值域相同的是()A.y=sinx B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知样本,,…,的平均数为5,方差为3,则样本,,…,的平均数与方差的和是_____12.不等式的解集是___________.(用区间表示)13.已知,求________14.如图,矩形是平面图形斜二测画法的直观图,且该直观图的面积为,则平面图形的面积为______.15.对于定义在区间上的两个函数和,如果对任意的,均有不等式成立,则称函数与在上是“友好”的,否则称为“不友好”的(1)若,,则与在区间上是否“友好”;(2)现在有两个函数与,给定区间①若与在区间上都有意义,求的取值范围;②讨论函数与与在区间上是否“友好”16.已知函数则_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知集合,.(1)分别判断元素,与集合A,B的关系;(2)判断集合A与集合B的关系并说明理由.18.求满足下列条件的直线方程:(要求把直线的方程化为一般式)(1)经过点,且斜率等于直线的斜率的倍;(2)经过点,且在x轴上截距等于在y轴上截距的2倍19.已知平面向量满足:,|.(1)若,求的值;(2)设向量的夹角为,若存在,使得,求的取值范围.20.(1)计算:.(2)化简:.21.已知等差数列满足,前项和.(1)求的通项公式(2)设等比数列满足,,求的通项公式及的前项和.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】①由两直线的位置关系判断;②由直线与平面的位置关系判断;③由空间角定理判断;④由直线与平面平行的定义判断.【题目详解】①两条直线,没有公共点,那么,平行或异面直线,故错误;②若直线上有无数个点不在平面内,则或相交,故错误;③由空间角定理知,正确;④由直线与平面平行的定义知,正确;故选:C2、B【解题分析】由题意利用余弦函数的图象和性质,逐一判断各个结论是否正确,从而得出结论.【题目详解】对于A,的周期为,若,则是的整数倍,故A错误;对于B,当时,,则函数的图象关于点中心对称,B正确;对于C,当时,,不是函数最值,函数的图象不关于直线对称,C错误;对于D,,,则不单调,D错误故选:B.3、D【解题分析】异名函数图像的平移先化同名,然后再根据“左加右减,上加下减”法则进行平移.【题目详解】变换到,需要向右平移个单位.故选:D【题目点拨】函数图像平移异名化同名的公式:,.4、C【解题分析】由题意可得的图象关于直线对称,由条件可得时,为递增函数,时,为递减函数,函数在递减,即为最大值,由,代入计算可得所求最大值【题目详解】函数对任意的实数x,都有,可得的图象关于直线对称,当时,,且为递增函数,可得时,为递减函数,函数在递减,可得取得最大值,由,则在的最大值为3故选C【题目点拨】本题考查函数的最值求法,以及函数对称性和单调性,以及对数的运算性质的应用,属于中档题.将对称性与单调性综合考查一直是命题的热点,解这种题型往往是根据函数在所给区间上的单调性,根据对称性判断出函数在对称区间上的单调性(轴对称函数在对称区间上单调性相反,中心对称函数在对称区间单调性相同),然后再根据单调性求解.5、A【解题分析】根据题意可得1,是方程的两根,从而得到的关系,然后再解不等式从而得到答案.【题目详解】由题意可得,且1,是方程的两根,为方程的根,,则不等式可化为,即,不等式的解集为故选:A6、A【解题分析】全称命题的否定是特称命题,并将结论加以否定.【题目详解】因为命题,所以命题p的否定是,故选:A.7、D【解题分析】根据给定条件利用对数型复合函数单调性列式求解作答.【题目详解】函数中,令,函数在上单调递增,而函数在上单调递增,则函数在上单调递增,且,因此,,解得,所以实数a的取值范围为.故选:D8、A【解题分析】由得,所以;由得,所以.所以.选A9、D【解题分析】由题意,补全图形,得到一个长方体,则PD即为球O的直径,根据条件,求出PD,即可得答案.【题目详解】依题意,补全图形,得到一个长方体,则三棱锥P-ABC的外接球即为此长方体的外接球,如图所示:所以PD即为球O的直径,因为平面,,,所以AD=BC=3,所以,所以半径,故选:D【题目点拨】本题考查三棱锥外接球问题,对于有两两垂直的三条棱的三棱锥,可将其补形为长方体,即长方体的体对角线为外接球的直径,可简化计算,方便理解,属基础题.10、D【解题分析】由函数的定义域为,值域依次对各选项判断即可【题目详解】解:由函数的定义域为,值域,对于定义域为,值域,,错误;对于的定义域为,值域,错误;对于的定义域为,,值域,,错误;对于的定义域为,值域,正确,故选:二、填空题:本大题共6小题,每小题5分,共30分。11、23【解题分析】利用期望、方差的性质,根据已知数据的期望和方差求新数据的期望和方差.【题目详解】由题设,,,所以,.故平均数与方差的和是23.故答案为:23.12、【解题分析】根据一元二次不等式解法求不等式解集.【题目详解】由题设,,即,所以不等式解集为.故答案为:13、【解题分析】由条件利用同角三角函数的基本关系求得和的值,再利用两角和差的三角公式求得的值【题目详解】∵,∴,,,∴,∴故答案为:14、【解题分析】由题意可知,该几何体的直观图面积,可通过,带入即可求解出该平面图形的面积.【题目详解】解:由题意,直观图的面积为,因为直观图和原图面积之间的关系为,所以原图形的面积是故答案为:.15、(1)是;(2)①;②见解析【解题分析】(1)按照定义,只需判断在区间上是否恒成立;(2)①由题意解不等式组即可;②假设存在实数,使得与与在区间上是“友好”的,即,即,只需求出函数在区间上的最值,解不等式组即可.【题目详解】(1)由已知,,因为时,,所以恒成立,故与在区间上是“友好”的.(2)①与在区间上都有意义,则必须满足,解得,又且,所以的取值范围为.②假设存在实数,使得与与在区间上是“友好”的,则,即,因为,则,,所以在的右侧,又复合函数的单调性可得在区间上为减函数,从而,,所以,解得,所以当时,与与在区间上是“友好”的;当时,与与在区间上是“不友好”的.【题目点拨】本题考查函数的新定义问题,主要涉及到不等式恒成立的问题,考查学生转化与化归的思想、数学运算求解能力,是一道有一定难度的题.16、【解题分析】根据分段函数解析式,由内而外,逐步计算,即可得出结果.【题目详解】∵,,则∴.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1),,,;(2),理由见解析.【解题分析】(1)根据集合的描述,判断是否存在使,属于集合A,B即可.(2)法一:由(1)结论,并判断是否有,即知A与B的关系;法二:={x|x是的整数倍},={x|x是的奇数倍},即知A与B的关系;【小问1详解】法一:令,得,故;令,得,故.同理,令,得,故;令,得,故.法二:由题意得:,又,故,;,.【小问2详解】法一:由(1)得:,,故;又,,由,得,故,所以,都有,即,又,所以.法二:由题意得={x|x是的整数倍},={x|x是的奇数倍},因为奇数集是整数集的真子集,所以集合B是集合A的真子集,即.18、(1);(2)或【解题分析】(1)由题意可得的斜率为,即可得所求直线的斜率,代入点斜式方程,即可得直线的方程,化简整理,即可得答案.(2)当直线不过原点时,设直线在y轴截距为a,根据直线方程的截距式,代入点坐标,即可得直线方程;直线过原点时,设直线方程为,代入点坐标,即可得直线方程,综合即可得答案.【题目详解】(1)因为直线的斜率为,所以所求直线的斜率为,所以所求直线方程为,化简得(2)由题意,当直线不过原点时,设直线在y轴截距为a,则所求直线方程为,将代入,可得,解得,所以直线方程为;当直线过原点时,设直线方程为,将代入,可得,解得,所以直线方程为,即,综上可得,所求直线方程为或19、(1);(2).【解题分析】(1)用向量数量积运算法则展开;(2)两边同时平方,转化为关于的一元二次方程有解.【题目详解】(1)若,则,又因为,|,所以,所以;(2)若,则,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论