版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省菏泽市鄄城县第一中学2024届高一上数学期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数有唯一零点,则()A. B.C. D.12.已知向量,满足,,且与夹角为,则()A. B.C. D.3.已知a,b,c,d均为实数,则下列命题正确的是()A.若,,则B.若,,则C.若,则D.若,则4.下列函数中,最小正周期为π2A.y=cosxC.y=cos2x5.一个几何体的三视图如图所示(单位:),则该几何体的体积为()A B.C. D.6.已知函数f(x)=若f(f(0))=4a,则实数a等于A. B.C.2 D.97.已知则()A. B.C. D.8.若都是锐角,且,,则A. B.C.或 D.或9.如图所示,观察四个几何体,其中判断错误的是()A.不是棱台 B.不是圆台C.不是棱锥 D.是棱柱10.从装有两个红球和两个白球的口袋内任取两个球,那么互斥而不对立的事件是()A.至少有一个白球与都是红球 B.恰好有一个白球与都是红球C.至少有一个白球与都是白球 D.至少有一个白球与至少一个红球二、填空题:本大题共6小题,每小题5分,共30分。11.已知△ABC的三个顶点分别为A(2,3),B(-1,-2),C(-3,4),则BC边上的中线AD所在的直线方程为_____12.将函数的图象先向下平移1个单位长度,在作关于直线对称的图象,得到函数,则__________.13.在中,边上的中垂线分别交于点若,则_______14.比较大小:________.15.已知a∈R,不等式的解集为P,且-1∈P,则a的取值范围是____________.16._____三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知函数其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为(1)求的解析式;(2)当,求的值域18.已知函数是定义在R上的奇函数,且当时,.(1)求函数的解析式;(2)若函数在区间上单调递增,求实数的取值范围.19.如图,已知AA1⊥平面ABC,BB1∥AA1,AB=AC=3,BC=2,AA1=,BB1=2,点E和F分别为BC和A1C的中点(1)求证:EF∥平面A1B1BA;(2)求直线A1B1与平面BCB1所成角的大小.20.某渔业公司年初用98万元购进一艘渔船,用于捕捞.已知该船使用中所需的各种费用e(单位:万元)与使用时间n(,单位:年)之间的函数关系式为,该船每年捕捞的总收入为50万元(1)该渔船捕捞几年开始盈利(即总收入减去成本及所有使用费用为正值)?(2)若当年平均盈利额达到最大值时,渔船以30万元卖出,则该船为渔业公司带来的收益是多少万元?21.已知向量,向量分别为与向量同向的单位向量.(Ⅰ)求向量与的夹角;(Ⅱ)求向量的坐标.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】令,转化为有唯一零点,根据偶函数的对称性求解.【题目详解】因为函数,令,则为偶函数,因为函数有唯一零点,所以有唯一零点,根据偶函数对称性,则,解得,故选:B2、D【解题分析】根据向量的运算性质展开可得,再代入向量的数量积公式即可得解.【题目详解】根据向量运算性质,,故选:D3、B【解题分析】利用不等式的性质逐项判断可得出合适的选项.【题目详解】对于A选项,若,,则,故,A错;对于B选项,若,,则,所以,,故,B对;对于C选项,若,则,则,C错;对于D选项,若,则,所以,,D错.故选:B.4、D【解题分析】利用三角函数的周期性求解.【题目详解】A.y=cosx周期为T=2πB.y=tanx的周期为C.y=cos2x的周期为D.y=tan2x的周期为故选:D5、B【解题分析】由三视图知,该几何体由两个相同的圆锥和一个圆柱组合而成,圆锥的底面圆半径为1,高为1,圆柱的母线长为2,底面圆半径为1,所以几何体的体积为,选B.6、C【解题分析】,选C.点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.7、D【解题分析】先利用同角三角函数基本关系式求出和,然后利用两角和的余弦公式展开代入即可求出cos(α+β)【题目详解】∵∴∴,∴,∴故选:D8、A【解题分析】先计算出,再利用余弦的和与差公式,即可.【题目详解】因为都是锐角,且,所以又,所以,所以,,故选A.【题目点拨】本道题考查了同名三角函数关系和余弦的和与差公式,难度较大9、C【解题分析】利用几何体的定义解题.【题目详解】A.根据棱台的定义可知几何体不是棱台,所以A是正确的;B.根据圆台的定义可知几何体不是圆台,所以B是正确的;C.根据棱锥的定义可知几何体是棱锥,所以C是错误的;D.根据棱柱的定义可知几何体是棱柱,所以D是正确的.故答案为C【题目点拨】本题主要考查棱锥、棱柱、圆台、棱台的定义,意在考查学生对这些知识的掌握水平和分析推理能力.10、B【解题分析】列举每个事件所包含的基本事件,结合互斥事件和对立事件的定义,依次验证即可.【题目详解】解:对于A,事件:“至少有一个白球”与事件:“都是红球”不能同时发生,但是对立,故A错误;对于B,事件:“恰好有一个白球”与事件:“都是红球”不能同时发生,但从口袋内任取两个球时还有可能是两个都是白球,所以两个事件互斥而不对立,故B正确;对于C,事件:“至少有一个白球”与事件:“都是白球”可以同时发生,所以这两个事件不是互斥的,故C错误;对于D,事件:“至少有一个白球”与事件:“至少一个红球”可以同时发生,即“一个白球,一个红球”,所以这两个事件不是互斥的,故D错误.故选:B.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】求出的坐标后可得的直线方程.【题目详解】的坐标为,故的斜率为,故直线的方程为即,故答案为:12、5【解题分析】利用平移变换和反函数的定义得到的解析式,进而得解.【题目详解】函数的图象先向下平移1个单位长度得到作关于直线对称的图象,即的反函数,则,,即,故答案为:5【题目点拨】关键点点睛:本题考查图像的平移变换和反函数的应用,利用反函数的性质求出的解析式是解题的关键,属于基础题.13、4【解题分析】设,则,,又,即,故答案为.14、<【解题分析】利用诱导公式,将角转化至同一单调区间,根据单调性,比较大小.【题目详解】,,又在内单调递增,由所以,即<.故答案为:<.【题目点拨】本题考查了诱导公式,利用单调性比较正切值的大小,属于基础题.15、【解题分析】把代入不等式即可求解.【题目详解】因为,故,解得:,所以a的取值范围是.故答案为:16、【解题分析】利用三角函数公式化简,即可求出结果.【题目详解】,故答案为:.【题目点拨】本题主要考查运用三角函数公式化简求值,倍角公式的应用,考查运算求解能力.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】(1)根据最低点M可求得A;由x轴上相邻的两个交点之间的距离可求得ω;进而把点M代入即可求得,把代入即可得到函数的解析式(2)根据x的范围进而可确定当的范围,根据正弦函数的单调性可求得函数的最大值和最小值.确定函数的值域【题目详解】(1)由最低点为得A=2由x轴上相邻的两个交点之间的距离为得,即,由点在图象上的,,即,故又,故;(2),当,即时,取得最大值2;当,即时,取得最小值,故的值域为.18、(1);(2).【解题分析】(1)设,计算,再根据奇函数的性质,得,,即可得函数在R上的解析式;(2)作出函数的图像,若在区间上单调递增,结合函数图像,列关于的不等式组求解.详解】(1)设,则,所以又为奇函数,所以,于是时,,所以函数的解析式为(2)作出函数的图像如图所示,要使在上单调递增,结合的图象知,所以,所以的取值范围是.19、(1)详见解析(2)30°【解题分析】(1)连接A1B,结合三角形中位线定理,得到平行,结合直线与平面平行,的判定定理,即可.(2)取的中点N,连接,利用直线与平面垂直判定定理,得到平面,找出即为所求的角,解三角形,计算该角的大小,即可【题目详解】解:(1)证明:如图,连接A1B.在△A1BC中,因为E和F分别是BC和A1C的中点,所以EF∥BA1.又EF⊄平面A1B1BA,所以EF∥平面A1B1BA(2)解:因为AB=AC,E为BC的中点,所以AE⊥BC.因为AA1⊥平面ABC,BB1∥AA1,所以BB1⊥平面ABC,从而BB1⊥AE.又BC∩BB1=B,所以AE⊥平面BCB1,.取BB1的中点M和B1C的中点N,连接A1M,A1N,NE.因为N和E分别为B1C和BC的中点,所以NE∥B1B,NE=B1B,故NE∥A1A且NE=A1A,所以A1N∥AE,且A1N=AE.因为AE⊥平面BCB1,所以A1N⊥平面BCB1,从而∠A1B1N为直线A1B1与平面BCB1所成的角.在△ABC中,可得AE=2,所以A1N=AE=2.因为BM∥AA1,BM=AA1,所以A1M∥AB,A1M=AB,由AB⊥BB1,有A1M⊥BB1.在Rt△A1MB1中,可得A1B1=4.在Rt△A1NB1中,sin∠A1B1N=,因此∠A1B1N=30°.所以直线A1B1与平面BCB1所成的角为30°【题目点拨】本题考查了直线与平面垂直、平行判定定理和直线与平面所成角的找法,证明直线与平面平行关键找出一条直线与平面内一条直线平行,直线与平面所成角的找法关键找出直线垂直平面的那条直线,建立角,解三角形,即可.20、(1)该渔船捕捞3年开始盈利;(2)万元.【解题分析】(1)由题设可得,解一元二次不等式即可确定第几年开始盈利.(2)由平均盈
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 7 上课了 好好学 说课稿-2024-2025学年道德与法治一年级上册统编版
- 养植物(说课稿)-2024-2025学年科学二年级上册人教鄂教版
- 2025年湘师大新版五年级英语上册阶段测试试卷含答案
- 2025年教科新版七年级科学上册月考试卷含答案
- Unit 1 People Of Achievement Using Language 说课稿-2024-2025学年人教版(2019)高中英语选择性必修第一册
- 人教版历史与社会八下第七单元第5课《第二次工业革命》说课稿
- 2025年苏教版九年级生物下册月考试卷
- 第二单元第10课一、《制作生日蛋糕出现的动画》说课稿 2023-2024学年人教版初中信息技术八年级上册
- 2025年房屋按揭销售协议2篇
- 2025年华东师大版八年级数学下册月考试卷含答案
- 课题申报书:大中小学铸牢中华民族共同体意识教育一体化研究
- 岩土工程勘察课件0岩土工程勘察
- 《肾上腺肿瘤》课件
- 2024-2030年中国典当行业发展前景预测及融资策略分析报告
- 《乘用车越野性能主观评价方法》
- 幼师个人成长发展规划
- 2024-2025学年北师大版高二上学期期末英语试题及解答参考
- 批发面包采购合同范本
- 乘风化麟 蛇我其谁 2025XX集团年终总结暨颁奖盛典
- 2024年大数据分析公司与中国政府合作协议
- 一年级数学(上)计算题专项练习汇编
评论
0/150
提交评论