2024届安徽省屯溪第一中学高一上数学期末教学质量检测模拟试题含解析_第1页
2024届安徽省屯溪第一中学高一上数学期末教学质量检测模拟试题含解析_第2页
2024届安徽省屯溪第一中学高一上数学期末教学质量检测模拟试题含解析_第3页
2024届安徽省屯溪第一中学高一上数学期末教学质量检测模拟试题含解析_第4页
2024届安徽省屯溪第一中学高一上数学期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届安徽省屯溪第一中学高一上数学期末教学质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的最小值为()A. B.3C. D.2.下列集合与集合相等的是()A. B.C. D.3.若函数是偶函数,函数是奇函数,则()A.函数是奇函数 B.函数是偶函数C.函数是偶函数 D.函数是奇函数4.下列函数中,既不是奇函数也不是偶函数的是A. B.C. D.5.已知,则a,b,c的大小关系为()A.a<b<c B.c<a<bC.a<c<b D.c<b<a6.已知点的坐标分别为,直线相交于点,且直线的斜率与直线的斜率的差是1,则点的轨迹方程为A. B.C. D.7.我国南宋时期著名的数学家秦九韶在其著作《数书九章》中独立提出了一种求三角形面积的方法“三斜求积术”,即的面积,其中分别为的内角的对边,若,且,则的面积的最大值为()A. B.C. D.8.若关于的方程在上有实数根,则实数的取值范围是()A. B.C. D.9.在平面直角坐标系中,角的顶点与原点重合,始边与轴的非负半轴重合,终边经过点,那么的值是()A. B.C. D.10.定义在实数集上的奇函数恒满足,且时,,则()A. B.C.1 D.二、填空题:本大题共6小题,每小题5分,共30分。11.给出下列四个结论函数的最大值为;已知函数且在上是减函数,则a的取值范围是;在同一坐标系中,函数与的图象关于y轴对称;在同一坐标系中,函数与的图象关于直线对称其中正确结论序号是______12.二次函数的部分对应值如下表:342112505则关于x不等式的解集为__________13.已知两定点,,如果动点满足,则点的轨迹所包围的图形的面积等于__________14.角的终边经过点,则的值为______15.已知幂函数的图象过点,则________16.已知函数f(x)=x2,若存在t∈R,对任意x∈[1,m](m>1,m∈N),都有f(x+t)≤2x,则m的最大值为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.计算下列各式的值:(1)(2)18.已知函数(1)求函数的单调递减区间;(2)若关于的方程有解,求的取值范围19.已知函数,(Ⅰ)求的最小正周期及单调递增区间;(Ⅱ)求在区间上的最大值和最小值20.已知函数(,且).(1)若函数在上的最大值为2,求的值;(2)若,求使得成立的的取值范围.21.已知幂函数的图象关于轴对称,集合.(1)求的值;(2)当时,的值域为集合,若是成立的充分不必要条件,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】运用乘1法,可得,再利用基本不等式求最值即可.【题目详解】由三角函数的性质知当且仅当,即,即,时,等号成立.故选:C【题目点拨】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2、C【解题分析】根据各选项对于的集合的代表元素,一一判断即可;【题目详解】解:集合,表示含有两个元素、的集合,对于A:,表示含有一个点的集合,故不相等;对于B:,表示的是点集,故不相等;对于C:,表示方程的解集,因为的解为,或,所以对于D:,故不相等故选:C3、C【解题分析】根据奇偶性的定义判断即可;【题目详解】解:因为函数是偶函数,函数是奇函数,所以、,对于A:令,则,故是非奇非偶函数,故A错误;对于B:令,则,故为奇函数,故B错误;对于C:令,则,故为偶函数,故C正确;对于D:令,则,故为偶函数,故D错误;故选:C4、D【解题分析】根据函数奇偶性的概念,逐项判断即可.【题目详解】A中,由得,又,所以是偶函数;B中,定义域为R,又,所以是偶函数;C中,定义域为,又,所以是奇函数;D中,定义域为R,且,所以非奇非偶.故选D【题目点拨】本题主要考查函数的奇偶性,熟记概念即可,属于基础题型.5、B【解题分析】结合指数函数、幂函数的单调性确定正确选项.【题目详解】在上递增,在上递增..故选:B6、B【解题分析】设,直线的斜率为,直线的斜率为.有直线的斜率与直线的斜率的差是1,所以.通分得:,整理得:.故选B.点睛:求轨迹方程的常用方法:(1)直接法:直接利用条件建立x,y之间的关系F(x,y)=0(2)待定系数法:已知所求曲线的类型,求曲线方程(3)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程(4)代入(相关点)法:动点P(x,y)依赖于另一动点Q(x0,y0)的变化而运动,常利用代入法求动点P(x,y)的轨迹方程7、A【解题分析】先根据求出关系,代入面积公式,利用二次函数的知识求解最值.【题目详解】因为,所以,即;由正弦定理可得,所以;当时,取到最大值.故选:A.8、A【解题分析】当时,令,可得出,可得出,利用函数的单调性求出函数在区间上的值域,可得出关于实数的不等式,由此可解得实数的取值范围.【题目详解】当时,令,则,可得,设,其中,任取、,则.当时,,则,即,所以,函数在上为减函数;当时,,则,即,所以,函数在上为增函数.所以,,,,则,故函数在上的值域为,所以,,解得.故选:A.9、A【解题分析】根据三角函数的定义计算可得结果.【题目详解】因为,,所以,所以.故选:A10、B【解题分析】根据函数奇偶性和等量关系,求出函数是周期为4的周期函数,利用函数的周期性进行转化求解即可【题目详解】解:奇函数恒满足,,即,则,即,即是周期为4的周期函数,所以,故选:B二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据指数函数单调性可得二次函数的最值,求得的最小值为;根据对数函数的图象与性质,求得a的取值范围是;同一坐标系中,函数与的图象关于x轴对称;同一坐标系中,函数与的图象关于直线对称【题目详解】对于,函数的最大值为1,的最小值为,错误;对于,函数且在上是减函数,,解得a的取值范围是,错误;对于,在同一坐标系中,函数与的图象关于x轴对称,错误;对于,在同一坐标系中,函数与的图象关于直线对称,正确综上,正确结论的序号是故答案为【题目点拨】本题考查了指数函数与对数函数的性质与应用问题,是基础题12、【解题分析】根据所给数据得到二次函数的对称轴,即可得到,再根据函数的单调性,即可得解;【题目详解】解:∵,∴对称轴为,∴,又∵在上单调递减,在上单调递增,∴的解集为故答案为:13、4π【解题分析】设点的坐标为(则,即(以点的轨迹是以为圆心,2为半径的圆,所以点的轨迹所包围的图形的面积等于4π.即答案为4π14、【解题分析】以三角函数定义分别求得的值即可解决.【题目详解】由角的终边经过点,可知则,,所以故答案为:15、3【解题分析】先求得幂函数的解析式,再去求函数值即可.【题目详解】设幂函数,则,则,则,则故答案为:316、5【解题分析】设g(x)=f(x+t)-2x=x2+(2t-2)x+t2≤0.从而得到g(1)≤0且g(m)≤0,求得t的范围,讨论t的最值,代入m的不等式求得m的范围,结合条件可得m的最大值【题目详解】函数f(x)=x2,那么f(x+t)=x2+2tx+t2,对任意实数x∈[l,m],都有f(x+t)≤2x成立,即有x2+(2t-2)x+t2≤0令g(x)=x2+(2t-2)x+t2,从而得到g(1)≤0,且g(m)≤0,由g(1)≤0可得,由g(m)≤0,即m2+(2t-2)m+t2≤0当时,;当时,综上可得,由m为正整数,可得m的最大值为5故答案为5【题目点拨】本题考查不等式恒成立问题解法,注意运用二次函数的性质,考查运算求解能力,是中档题三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)根据指数的运算性质进行求解即可;(2)根据对数的运算性质进行求解即可.【小问1详解】【小问2详解】18、(1);(2).【解题分析】(1)由二倍角正余弦公式、辅助角公式可得,根据正弦函数的性质,应用整体法求单调减区间.(2)由正弦型函数的性质求值域,结合题设方程有解,即可确定参数范围.【小问1详解】,令,解得,所以函数的单调递减区间是.【小问2详解】∵,∴,又有解,所以m的取值范围19、(Ⅰ)最小正周期是,单调递增区间是.(Ⅱ)最大值为,最小值为【解题分析】详解】试题分析:(Ⅰ)将函数解析式化为,可得最小正周期为;将代入正弦函数的增区间可得函数的单调递增区间是.(Ⅱ)由可得,故,从而可得函数在区间上的最大值为,最小值为试题解析:(Ⅰ),所以函数的最小正周期是,由,得,所以的单调递增区间是.(Ⅱ)当时,,所以,所以,所以在区间上的最大值为,最小值为点睛:解决三角函数综合题(1)将f(x)化为的形式;(2)构造;(3)逆用和(差)角公式得到(其中φ为辅助角);(4)利用,将看做一个整体,并结合函数的有关知识研究三角函数的性质20、(1)或;(2)【解题分析】(1)分类讨论和两种情况,结合函数的单调性可得:或;(2)结合函数的解析式,利用指数函数的单调性可得,求解对数不等式可得的取值范围是.试题解析:(1)当时,在上单调递增

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论