




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
连续时间系统的时域分时域分析:对系统的分析与计算均以时间t为变量LTI2.1LTIe(t
y(t 描述输入、输出关系的连续系统数学模型为n e(t
+
y(t0 0y(t)a1y(t)a0y(t)b2e(t)b0e(tay(n)(t) y(n1)(t)Lay(t)ay(t be(m)(t) e(m1)(t)Lbe(t)be(t m ay(i)(t) be(j)(t i j ay(i)(t) be(j)(t (用时域法求解连续系统的流程图 求特征根i求特征根i
全解
y(t)yh(t)yp(t ay(i)(t) be(j)(t
aiy(i)(t)
j
La 阶微分方程有n个特征根i(i1y(t)3y(t)2y(t)2e(ty(t)2y(t)y(t)e(ty(t)2y(t)5y(t)2e(t
ay(i)(t) be(j)(t j特解yp(t)的形式由激励e(t)的形式决定查P34表2说明:激励e(t)是在tt00时刻加入系统,因此特解yp(t)存在的时间为tt00例:已知某⼀系统的微分方程为y(t)3y(t2y(t)2e(te(t求当激励为(1)e(t)(t2e(t)e3t(t) ay(i)(t) be(j)(t 全解:y(tyh(typ(t齐次 特
j确定,n阶微分方程需要n个初始条件。例:已知系统的微分方程为y(t)4y(t4y(t)e(t3e(ty(0) y(0 e(t)et(t 例:已知某⼀系统的微分方程为y(t4y(t3y(t)e(ty(0) y(0 e(t10cos 关于系统在t=0-与t=0+状态的讨论(难点 ay(i)(t) be(j)(t 0t t<0 et0时系统的响应y ay(i)(t) be(j)(t j初始条件:yj)(0(由yj0)和e(t)共同决定从0: y(j)(t)可能发生跳即yj0yj0 令yj0yj0y = y(j)(0)y(j)(0= ay(i)(t) be(j)(t jy(t)4y(t)4y(t)e(t)3e(t(1)e(t)(t (2)e(t)et(ty(t)4y(t)4y(t)(t)3(ty(t)4y(t)4y(t)et(t)et(t)3et(t(t)2et(t阶导数项,使之方程两端平衡。而右端冲激函数的产生意味着左端y(i)(t)中的某些项在t=0处有跳变。方程左端(t)方程右端(t420242021
t0处跳跃量y(0y(0 例:y(t3y(t3e(t)y(0求(1)e1(t)(t (2)e2(t)(t)时y(0例:y(t4y(t3y(te(t2e(te(t已知e(t)(t),y(0) y(0) 求y(0),y(0y(i)(t)同阶次y(i)(t) 当平衡完成后,y(i)(t)(i=0,1…n-1)项中所含有的(t)项的系数即例:y(t3y(t)3(t),求ye(0注意注意例:已知y(t3y(t)3e(t),y(0)0,e(t)(t)求y(t)ye(0) y(t)3e3ty(t)y(t)
3e3t(t)9e3t
3(t)9e3t y(0+),y(0+)y(t)4y(t)5y(t)2y(t)(t)3(t)求),n ay(i)(t) nCy(t t C yi(0)yi(0)yi(0 ay(i)(t) be(j)(t 解由yh(t)yp(t) y(t)y(t)y(t)Ceit y(j)(0)0(j0,1,L.ny(j)(0)y(j)(0 由yh(t)yp(t)
aiy(i)(t)bje(j)(t y(t) yh(t)yp(t) yzi(t) y(t) Ci
it
(t CeitCeity(t)p p y(t pyh(t
初始条件=初始状态+跳变量初始条件=初始状 初始条件=跳变y(t)=yzi(t)+y(t)yh(t(t)yh(t)yp(t完全 齐次 特解(t)yh(t)yp(t完全 齐次 特解y(i)(0)y(i)(0)y(i)(0)y(i)(0)y(i)(0 y(i)(0)y(i)e(iy(i)(0)y(i)(0) 例:某LTI系统数学模型 y(t)3y(t)2y(t)2(t)6(t已知y(0) y(0) 求yzi yzs y(t)说明说明2-12-22-4,(1)(3)2-6 e(t) yzs(t)h(t
T0,(t 系统方程的⼀般形式为 ay(i)(t) be(j)(t ah(i)(t)
b(j)(t
j? (j0,1,2Ln? 讨论:t>0时系统属于什么响应t>0时系统的冲激响应为零输入响 例:某⼀系统数学模型为y(t5y(t6y(te(t2e(t求该系统的冲激响应h(t) h(t)5h(t)6h(t)(t)2(t h(t)满足h(0h(0 可求得h(01h(0)当t>0时,h(t5h(t6h(t h(t)(c ce3t)(t
h(0)c1c2 h(0)2c
解 h(t)
h(t)5h(t)6h(t)(t)2(t 方法设h1(t)满足h(0 (ch(t) ce3t)((c 可求得h1(00h1(0 h1(0)c1c2 c1ch(0)c
13c2
1h(t)(e2te3t)(t1h(t)h(t)2h(t)e3t(t 例:某⼀系统数学模型为y(t5y(t6y(th(t)5h(t)6h(t)(t)2(th(0) h(0) h(t)e3t(t
e(t)2e(t例:某⼀系统数学模型为y(t5y(t6y(te(t2e(th(t)5h(t)6h(t)(t)2(th(0) h(0) 例:某⼀系统数学模型为y(t5y(t6y(te(t2e(th(t)5h(t)6h(t)(t)2(t h(0)21,h(0)h(t)(t)5(t)(12e2t33e3t)(th(t)的形式与(i) ah(i)(t) (j)(t j当nm
Cieit(tn当nm h(t)
Cieit(t)C0(tn当nm h(t)n
Ceit(t)C(t)C(t)L
(te(t) ng(t)T0,(tn
g(t)
ay(i)(t)bmj)
ag(i)(t) b(j)(t ? (j0,1,2Ln?初始条件:gj)(0
h(t)与g(t)的关 g(t)h( Q(t)d(t) h(t)dg(tdt例:某⼀系统的数学模型为y(t5y(t6y(te(t2e(t求该系统的阶跃响应g(t)g(t)5g(t)6g(t)(t)2(tg(0)1,g(0)g(t)e3t(t例:某⼀系统的数学模型为y(t5y(t)6y(t)e(t)2e(t求该系统的冲激响应h(t) h(t)5h(t)6h(t)(t)2(th(0) h(0)h(t)(t)3e3t h(t)g(t)(t)3e3t例:某⼀系统的数学模型为y(t)求该系统的冲激响应h(t
3y(t)4y(t)e(t)2e(th(t)(3et4e2t)(t求该系统的阶跃响应g(tg(t)
h(x)dx
(3ex4e2x)(x)dx3ett tt t(3e0
4e2x)dx(3et2e2t1)(t设f1(t)与f2t)是定义在()f1(t)f2(t)的卷积积分,积分结果仍是以时间t为变量的函数f(t)。f(t) f1()ff1(t)f2(t)的卷积积分,积分结果仍是以时间t为变量的函数f(t)。f(t)f1(t)f2(tff1(t)f2(t)当f1(t)和f2(t)的时间没有限制时,卷积积分的积分限从–+f1(t和f2(t)f(t)f1(t)f2(t)当f1(t)和f2(t)的时间没有限制时,卷积积分的积分限从–+f1(t和f2(t) 1)若t0则f(t
f1(t f1()f2(t (20若t0t
f2(t f(t) f1()f2(t (2若t0时 f1(t)f2(t) f(t)
f1()f2(t (2f(t)f1(t)f2(t) f1()f2(t (267)例 f1(t)=t(t f2(t)(t 求f(t)f1(t)f2(t f(t)f(t)f(t)1t2(t 例 f1(t)=e2t(t f2(t)(t 求f(t)f1(t)f2(t f(t)f(t)f(t)1(1e2t)(t f(t)f1(t)f2(t)f1()f2(t从卷积的(数学)变量置换t反折f2(f2(-将
(-)在轴上平移t得
(t–f1()和f2(t–f1(t)f2(t)
f2( f2(t f1(t)f2(t2
f2(t
f1(t)2[(t)(t3
f2(t) 4
变量置换t 3)将f2(-)在轴上平移t得反折f2()f2(- t0 f( t0 1
f2(t–的波形在 有参变量t4)将f1()和f2(t–)当t从-∞逐渐增大时,f2(t–)沿f2(t
2
t
f(t) tf2(t
t0t 3t
f(t)024(t)dt3t 2
t
2t f(t)f(t)
t2242t
434
)d t-2
4t
4
422f2(t2f2(t0t4t
t0tf(t) 2t2
34
4)2 4ttf2(t 在t的可积函数(即t<t1时f1(t)=0,t<t2时f2(t)=0)例:已知信 f1(t)(t)(t3) f2(t)ett试求y(tf1(tf2t)
当0
3 f(t)f(t)
1e( -1 f2(t
当
133
e f(t)f(t)
1e(t 0
(e3
e10123y(t
f(t)f(t)
0,t 1
,0t
(e3 et,t1
y(t) t)0h(tt00 (tt0 h(tta(t)(tt0 ah(t)h(tt00
gV(tf(t) f(n)g
0n)
f(t
V当)宽)于无穷小量用d表示,nV趋于连续变量用
n)
n
f(t) f(tf(t)limf(n)(tn)V0
f()(t (2 f(t)
f(n)(tn) (2对于LTI
e(t) x(0) y(t e(t) e(n)(tn) e()(tV0 e(t)(t) yzs(t) e(t)(t yzs(t)h(te(t)e(nV)(tnV) yzs(t)e(nV)h(tnV) e(t)lime(n)(tn)yzs(t)lime(n)h(tn)V0
V0yzs(t)e( )d(2yzs(t)e()h(t (2yzs(t)e(t) 结论:系统在激励信号e(t)作用下的零状态响应yzs(t)e(t)与系统冲激响应h(t)的卷积积分(卷积积分的物理意义)对因果系统,若激励e(t)在t=0 e(t) h(t)tyzs(t)e(t)h(t)0e()h(tt例:已知某LTI连续系统的h(t)=(t),激励信号e(t)=(t-解:yzs(te(th(te()h(tt 例 h(t)(t),e(t)e2t(t)求yzs(t解:yzs(te(th(te()h(t
0
1(1e2t)(t) f(t)f1(t)f2(t)f2(t)f1(t 2f2f1(t02 选反折函数时要考虑:1)f1(t)f2(t)f3(t)f1(t)f2(t)f1(t)f3(t (2 e(tf2(tf3(te1(te2(th(t)f1(t则1y1zs(te(t)[e1(t)e2tLen(t
2y2zs(t1y1zs(t y2zs(t ynzs(tb)设e(tf1(th(tf2(tf3(th1(th2(t系统的冲激响应则yzs(te(th(te(t[h1(th2(t)]若h(t)[1(h2(t)Lhn(t)]e(t则yzs(th(te(t
e(t)1()e(t)h2(t)Le(t)hn(te(t
(t) yzs(t)
e(t …h(t)h(t)h(t)Lh(t)…(t)(t)f1(t)f2(t)f3(t)f1(t)f2(t)f3(t (2物理意义:设e(tf1(th1(t)h2(t)
f2(tf3(t
yzs(te(th1(t)h2(te(th1(th2(t)e(th(te(t e(t)1
yzs(t e(th(t)
1(th2
(t)h(t)1()h2(tLhn(t)e(e(t(t)(t)(t)
yzs(tf(t)(t)f(t (2任意函数f(t)与(t)卷积的结果为该函数f(t)f(t)(tt0)f(tt0 (2任意函数f(t)与延时t0f(t102ff(t102 f(t10f(t102 若f(t)(t则(t(t(t(t)(tt1)(tt1f(tt1)(tt2)f(tt1t2f(t)(tt1)(tt2)f(tt1t2例:f1(t)和f2(t)的波形如图所示,求f1(t)*f2(t)f2(t02f1(tf2(t02f1(t101 32 01 3 T(t)(tnT)梳状函fT(t)
f0(t)Tf0(t)(tnT
fT(t)1
f0(t)T(t
(tnT (2 TfT(t)f0(t)T(t fT(t)
f0(t)T(t
T Tttf
df(t)
f(
(t
f(f(2)(t)设f(tf(tf(tf(f(2)(t) fff(1)(t)f(1)(t) (1)(t) f f(t) fff(1)(t)f(1)(t) f(2)(t) 设f(tf(tf(f(2)(t) 则f(1)(t) (t) ( f(t)f(1)(t)f(1)(t)f(t) f(t)(t)f(t (2t函数f(t)f(t)tf(t)[(t)](1)f(t)(t) f( (2函数f(t)与(t)卷积,相当于对f(t)从∞到tf(t)f1(t)f2(tf(1)(t)f(1)(t)f(1)(t)f(1)(t (2 f1(t)与f2(t卷积等于先对其中任⼀函数求导数对另⼀函数f(t)f(i)(t)f(i)(t)f(i)(t)f(i)(t f1fi(t)f(j)(t) (ijf1
(t)f(ij
(t)
f(j)(t2例f1(t)和f2(t)的波形如图所示, f1(t)f2(t21
f(1)(t111
f2(t
f(1)(t
f1(t)21
f2(t)2 2
2 例求e2t(t(t(t例:f1(t)cost(t f2(t)(t)(t4π),求f1(t)f2(t解:f(t)f(t) f(1)(t)f(t sint(t)[(t)(t4sint(t)sin(t4π)(tsint(t)[(t) (t4例:已知某⼀系统的数学模型为y(t)2y(t)e(t3e(t),其中e(t)t(t),求yzs(t)。系统对任意激励系统对任意激励e(t)的零状态响应yzs(t)yzs(t)e(t)h(th(t)(t)e2t(tyzs(t)
e(t)h(t
f(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论