2022年陕西省西安市蓝田县英才中学高二数学文下学期期末试题含解析_第1页
2022年陕西省西安市蓝田县英才中学高二数学文下学期期末试题含解析_第2页
2022年陕西省西安市蓝田县英才中学高二数学文下学期期末试题含解析_第3页
2022年陕西省西安市蓝田县英才中学高二数学文下学期期末试题含解析_第4页
2022年陕西省西安市蓝田县英才中学高二数学文下学期期末试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022年陕西省西安市蓝田县英才中学高二数学文下学期期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.直线3x-4y-9=0与圆,(θ为参数)的位置关系是(

)A.相切

B.相离

C.直线过圆心

D.相交但直线不过圆心参考答案:D略2.程序框图如图所示,则该程序框图运行后输出的S是(

)A.

B.-3

C.2

D.参考答案:A略3.某校共有学生2000名,各年级男、女生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为()

一年级二年级三年级女生373xy男生377370zA.24 B.18 C.16 D.12参考答案:C【分析】根据题意先计算二年级女生的人数,则可算出三年级的学生人数,根据抽取比例再计算在三年级抽取的学生人数.【解答】解:依题意我们知道二年级的女生有380人,那么三年级的学生的人数应该是500,即总体中各个年级的人数比例为3:3:2,故在分层抽样中应在三年级抽取的学生人数为.故选C.4.已知集合A={x|y,x∈Z},则集合A的真子集个数为()A.32 B.4 C.5 D.31参考答案:D【分析】首先确定集合中元素个数,然后根据真子集数量的计算公式:得到结果.【详解】因为且,所以,故集合的真子集个数为:.【点睛】集合中含有个元素:则的子集个数为:;的真子集个数为:;的非空真子集个数为:.5.设m,n是两条不同直线,α,β是两个不同的平面,给出下列四个命题:①若m?α,n∥α,则m∥n;②m⊥α,n⊥β,m⊥n,则α⊥β;③若α∩β=n,m∥n,则m∥α,且m∥β;④若m⊥α,m⊥β,则α∥β其中正确的命题是()A.① B.② C.③④ D.②④参考答案:D【考点】命题的真假判断与应用.【分析】本题中四个选项涉及的命题是在线面关系的背景下研究线线、线面位置关系.①②两个选项是在线面平行、面面垂直的背景下研究线线平行与垂直,③④两个选项是在面面相交、平行的背景下研究线线平行与垂直,分别由线面平行、面面垂直的性质进行判断得出正确选项.【解答】解:①选项中的命题是不正确的,因为直线m,n可能不在同一个平面内,故不是正确命题;②选项中的命题是正确的,因为m⊥α,n⊥β,m⊥n成立时,α,β两平面的关系一定是相互垂直,故是正确选项;③选项中的命题是不正确的,因为α∩β=n,m∥n时,可能m在α内,或m在β内,故不是正确选项;④选项中的命题是正确的,因为m⊥α,m⊥β,根据垂直于同一条直线的两个平面一定平行,可得α∥β,是正确选项.故选D.6.设,则中奇数个数为…(

A.2

B.3

C.4

D.5参考答案:A7.棱长为的正方体ABCD-A1B1C1D1中,异面直线DD1与BC1之间的距离为(

)A.

B.

C.

D.

参考答案:A略8.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的左视图() A. B. C. D.参考答案:D【考点】简单空间图形的三视图. 【专题】作图题;压轴题. 【分析】根据三视图的特点,知道左视图从图形的左边向右边看,看到一个正方形的面,在面上有一条对角线,对角线是由左下角到右上角的线,得到结果. 【解答】解:左视图从图形的左边向右边看, 看到一个正方形的面, 在面上有一条对角线, 对角线是由左下角到右上角的线, 故选D. 【点评】本题考查空间图形的三视图,考查左视图的做法,本题是一个基础题,考查的内容比较简单,可能出现的错误是对角线的方向可能出错. 9.抛物线的焦点到准线的距离是

)A.

B.

C.

D.参考答案:B10.三菱柱ABC-A1B1C1中,底面边长和侧棱长都相等,

,则异面直线AB1与BC1所成角的余弦值为(

)A.

B.

C.

D.参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11.已知关于的不等式的解集是,则关于的不等式的解集是

.参考答案:略12.不等式的解集______________.参考答案:略13.设随机变量的分布列为,0,1,2,…,n,且,则_____________参考答案:8【分析】由题意得随机变量,运用数学期望求解n,从而可得方差的值.【详解】随机变量ξ的分布列为P(ξ=k)=,k=0,1,2,…,n,可得Eξ=n×=24,解得n=36,∴Dξ=36××=8,故答案为:8.【点睛】本题考查二项分布的期望与方差,若随机变量,则.14.已知△,点的坐标为,点、分别在抛物线及圆在抛物线开口内部圆弧上运动,且总是平行于轴,那么△的周长的取值范围为

.参考答案:.(4,6)略15.若a>0,b>0,a+b=2,则下列不等式对一切满足条件的a,b恒成立的是_________(写出所有正确命题的编号)①;②;③;④;⑤.参考答案:①③⑤略16.若奇函数满足且当时,,则

.参考答案:17.设P:;Q:,若P是Q的充分不必要条件,则实数a的取值范围是_________.参考答案:0a1/2略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.如图,在三棱锥中,已知△是正三角形,平面,,为的中点,在棱上,且,(1)求证:平面;(2)求平面与平面所成的锐二面角的余弦值;(3)若为的中点,问上是否存在一点,使平面?若存在,说明点的位置;若不存在,试说明理由.

参考答案:解一:(1)取AC的中点H,因为AB=BC,所以BH⊥AC.因为AF=3FC,所以F为CH的中点.因为E为BC的中点,所以EF∥BH.则EF⊥AC.因为△BCD是正三角形,所以DE⊥BC.因为AB⊥平面BCD,所以AB⊥DE.因为AB∩BC=B,所以DE⊥平面ABC.所以DE⊥AC.因为DE∩EF=E,所以AC⊥平面DEF(2)(3)存在这样的点N,当CN=时,MN∥平面DEF.连CM,设CM∩DE=O,连OF.由条件知,O为△BCD的重心,CO=CM.所以当CF=CN时,MN∥OF.所以CN=解二:建立直角坐标系

略19.有编号为1,2,3,…,n的n个学生,入坐编号为1,2,3,…n的n个座位.每个学生规定坐一个座位,设学生所坐的座位号与该生的编号不同的学生人数为ξ,已知ξ=2时,共有6种坐法.(1)求n的值;(2)求随机变量ξ的概率分布列和数学期望.参考答案:【考点】离散型随机变量及其分布列.【专题】计算题.【分析】(1)解题的关键是ξ=2时,共有6种坐法,写出关于n的表示式,解出未知量,把不合题意的舍去.(2)学生所坐的座位号与该生的编号不同的学生人数为ξ,由题意知ξ的可能取值是0,2,3,4,当变量是0时表示学生所坐的座位号与该生的编号都相同,当变量是2时表示学生所坐的座位号与该生的编号有2个相同,理解变量对应的事件,写出分布列和期望.【解答】解:(1)∵当ξ=2时,有Cn2种坐法,∴Cn2=6,即,n2﹣n﹣12=0,n=4或n=﹣3(舍去),∴n=4.

(2)∵学生所坐的座位号与该生的编号不同的学生人数为ξ,由题意知ξ的可能取值是0,2,3,4,当变量是0时表示学生所坐的座位号与该生的编号都相同,当变量是2时表示学生所坐的座位号与该生的编号有2个相同,当变量是3时表示学生所坐的座位号与该生的编号有1个相同,当变量是4时表示学生所坐的座位号与该生的编号有0个相同,∴,,,,∴ξ的概率分布列为:ξ0234P∴.【点评】培养运用从具体到抽象、从特殊到一般的观点分析问题的能力,充分体现数学的化归思想.启发诱导的同时,训练了学生观察和概括归纳的能力.20.已知函数(为实数).(I)若在处有极值,求的值;(II)若在上是增函数,求的取值范围.参考答案:(I)解:由已知得的定义域为又 ……3分由题意得 ……6分(II)解:依题意得对恒成立, ……8分 ……10分的最大值为的最小值为 ……12分又因时符合题意为所求 ……14分

21.已知椭圆方程为,射线与椭圆的交点为M,过M作倾斜角互补的两条直线,分别与椭圆交于A,B两点(异于M).(1)求证直线AB的斜率为定值;(2)求面积的最大值.参考答案:(1)见解析(2)【分析】(1)先求出,设直线,联立直线MA的方程与椭圆的方程,借助韦达定理证明直线的斜率为定值;(2)设直线,设,求出,再利用基本不等式求面积的最大值.【详解】解:(1)由,得不妨设直线,直线.由,得,设,同理得直线的斜率为定值2(2)设直线,设由,得,,,由得,且,点到的距离,当且仅当,即,当时,取等号,所以面积的最大值为1.【点睛】本题主要考查直线和椭圆的位置关系,考查椭圆中的定值问题和最值问题,考查基本不等式求最值,意在考查学生对这些知识的理解掌握水平,属于基础题.22.某商店预备在一个月内分批购入每张价值为20元的书桌共36台,每批都购入x台(x是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费.(1)求该月需用去的运费和保管费的总费用f(x);(2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由.参考答案:【考点】函数模型的选择与应用;基本不等式在最值问题中的应用.【分析】(1)不妨设题中比例系数为k,每批购入x台,共需分批,每批价值为20x元,总费用f(x)=运费+保管费;由x=4,y=52可得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论