八步教你学会Meta分析_第1页
八步教你学会Meta分析_第2页
八步教你学会Meta分析_第3页
八步教你学会Meta分析_第4页
八步教你学会Meta分析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

八步教你学会Meta分析Meta分析(一):选题现在读研的很多学生甚至临床上的医生,迫于某些压力或者是个人兴趣,开始学习Meta分析,理想的发篇SCI文章,不济的也当学个技术,技多不压身。为什么会找Meta做为切入点呢,江湖传言此乃发文神器,某大仙一年发十篇Meta的也不是少见。感觉它不用做实验,窝在家一股脑的看文献,整理整理数据,也不耗钱,真是一本万利的生意,尤其适合临床医生。所以聪明的中国人开始走上了Meta这道“不规路”,早上发,中午发,天天发,发。。。。想发一篇文章,首先是要选好一个题目。我可以负责任的告诉大家,你今天选题的高度决定了你日后发文的高度。所以磨刀不误砍柴工,好好选题,良好的开端是成功的一半。那么问题来了,怎么选题呢?结合我个人的经验,我认为良好的优质的题目有以下几个特点:1•是临床现有的争议点,大家对此还不是很统一,指南也模棱两可。对现有的操作的一种challenge,如果你的Meta能改变某种临床行为,那你厉害了。之前己经有篇Meta了,但后来因为加入新的articles,挑战了之前的结果,能引起一定的讨论。现阶段大部分multi-centersRCTs都是国外研究机构发表的,他们一般在进行临床研究的同时,己经将其Meta分析的文章也顺带做了,RCTs发表同时将Meta分析也扔出去。所以好题目都被他们抢了,我们只能捡些他们不要的。不管如何,我们还是要掌握一些选题的技巧和原则,指不定那一天就让我们碰上了一个好题目也不一定:看本专业Top临床期刊最新的articles和review,如我是神经科的,我就去多逛逛Neurology,Stroke,Movementdisorder等专科杂志最新的RCTs和综述,尤其是综述里而治疗的那一部分。同时也可以逛逛4大临床期刊里而关于木专业的一些articles和reviewo看指南的治疗部分,如XX治疗方式XX病最近有研究表示有效或无效,但缺乏足够的証据,有争议,那就是我们的切入点。去逛逛临床试验注册网站,有些大型RCTs发表前都会在这些网站上注册,你就可以了解最新正在进行的临床研究,知道它们大概什么时间弄完,守株待兔,不信捉不住你。推荐个临床注册网站:https://www.clinicaltrials.gOv/o较全较好用,随时跟踪最新ongoing的RCTs.中医方面的Meta,那真是得天独厚,国际友人肯定争不过我们,一想一个准,都没人发表过。但有个缺陷就是大部分中医的临床研究都是发表在国内文献,所以我们纳入的研究也都是国内的为主,这会对整体质量造成一定影响。投稿方向也一般局限在中西医结合领域(CAM:complementaryandalternativemedicine)的SCI期刊,但实践表明只要你不嫌弃分值低,都是能发表的。Meta分析(二):检索在我们选好题目后,接下来就进入检索文献这一步了。我以实例来说明,如题目"'Levodopaalonecomparedwithlevodopa-sparingtherapyasinitialtreatmentforParkinson'sdisease:aMeta-analysis^(左旋多巴做为首选药物治疗帕金森的Meta分析)。总体上要按照PICOS原则来检索,PICOS-患者干预比较结果。还有些专业书在检索方法写的天花乱坠,各种主题词(Mesh)+自由词、布尔逻辑词穿插其中,其实我的检索策略有点简单粗爆(其实是因为我根木不会复朵的检索策略)。我只在题目/摘要中检索"帕金森“和”左旋多巴S我相信我要的文章肯定会有这两个词。我一直认为,越简单的检索词能获得越多的文献,虽然找起来耗工夫,但不易漏掉。当然如果放在摘要中你觉得文章太多(千篇数量级),那我就把“帕金森”放在题目中检索(可能会变成百篇数量级),继续把“左旋多巴”放在题目/摘要中,所以我是根据文章的数量来决定不同的检索区域的。可能这样的方法不够科学,但我个人认为很实用。算了,不要在意这些小细节了。既然说到检索策略,顺带说下正规点的“主题词+自由词J先在各个数据库里确定"Levodopa"这个I的主题词,同时找出它五花八门的自由词,在主题词与自由词之间用or连接进行检索。同理,确定“Penkinsof这个P的主题词,同时找出它五花八门的自由词,在主题词与自由词之间用•连接进行检索。然后在P与I的检索之间用and连接。检索策略定好后,要确定数据库了,外文方而我个人比较喜欢检索4个数据库,分别是Pubmed,Googleschalor,Cochranelibrary和clinicaltrialo当然很多文章会选择EMBASE,MEDLINE,WEBOFSCIENCE等等。但前而4个我认为基木己经洽盖了大部分的文献,截止目前也没reviewer对我所选的4个databases提出质疑(可能他们眼神不好漏掉了)。中文的数据库可以参见CNKI,万方和维普。但一般我不建议加入中文文献(会影响文章的质量,除非是写中药或针灸方面)。然后,我们还要制定纳入标准和排除标准,用以纳入我们想要的文献。标准的制定不是我看着天花板凭空想出来的,它是需要我们提前先看几篇相关文献,再结合

我们所需要研究的目的,再进行制定的。当然,标准不是死的一成不变的,可能会随着我们检索的过程而进行适当的修改。最后,我们可以多看些相关的综述,因为综述中总会引用很多研究,而我们可以在它的参考文献那里直接找到一些可能被我们遗漏的文献。UOH2e$下而这就是一般的检索文献流程图UOH2e$Publivutix»cwludcd

OiplicfitccUUin273iRccoTtl^identin<x1thmughsoifvhinx:i'ubMcd.Google5:holir(n-4BI)Publivutix»cwludcd

OiplicfitccUUin273iReamhbasee!i>nreviewofcillcandabstnui(n-208)Pabiica!ior»o^UiK<*dfcrfurthercvahu!i»B(n-67)StixliegincfcidixlinmcfA-Ans)Reamhbasee!i>nreviewofcillcandabstnui(n-208)Pabiica!ior»o^UiK<*dfcrfurthercvahu!i»B(n-67)StixliegincfcidixlinmcfA-Ans)lyst«(n-II)IAbtlHtvl^ciKriiiivtrts2、icu、八”nliuniah(Il-60)C^perinKiiltrul<n52)IneubM由cdinugerrevxwcJ in-29>P«bli<atic«i3excludedbatedonfulltextroviw<r.-^6):WiihiMJlcuntrd,"-29lExcluded o!iv>ttestingthecttccioicomparingItk»|xialone<virh tlcrap>incirlyPRMcr<8(24》ShocllimeMlowup<n-3)Meta分析(三):制作特征表Meta分析就像八股文一样,有那么一个相对固定的框架,然后我们只需按着这个架子一步一步像牛一样往前走就行了。通过上一部分找好文献,纳入研究之后我们就需要开始着手做特征表了,用一句话概括此Table制作要髓:那就是readers只需要看这个表格,就能大概知道纳入的文献它所有的重要细节。看表知文章的故事,而无需再重新去下载原始文献。如下:Tabte1.DescriptiveSummaryofIncludedP^tk?nt$andRandomizedTrialsCharjcwttficsTabte1.DescriptiveSummaryofIncludedP^tk?nt$andRandomizedTrialsCharjcwttfics3Source*RKrurtmemPeriodTimeFqidcforEntoasculMTherapyBylineCTAC<MRA.NO.(%)TrejtnwntGroi^daysf<0.OfPatientsintffvention.Ko(%)StrokeLocationsIVtPAEndovascularInter^«enlic«NOOfPMientsControlSvokeLcotionsIVtPASYNTHESIS,^20132008-2012within6hotousel0181Anteriorcirculation160(88.4}FWterlo(droJ3tlon:18(9.9)Coin1(0.6)0lAtPA,micro^u^ve:109/165(66.1)SOUUireFR:18/165(10.9)PewWj:9/165(5.5)Trevo:S/165⑶Uera:5;165⑶181A/iter«orcir<uhtion:170(93.9)PostalorcrculMW:11<6.0Bolh:O174(961)SOMRRESCUE."20132004-2011mmatewithm8hofoaset118<100)64ICA13(20.3)MlMCA:39<60.9)M?MCA12(188)28(418}37/61(607)Pesbo14/61(23)Uhci♦Hzw:10/G1(1$4)Uerc^Penumbca♦iatPA-引6】(13.1)54ICA:7(13)Ml 3902.2}M?MCA8(148)16(296)90IMSIII?0201320062012kiitUtpwithinShofometM6(46.6)4MLefthcmivphcfe:224(51.6}Rjghtbfrophr/r197(45.4|Brjin«em/c^rebe<lum10<23)Uricncwnormultipir:3(07)434(100)lAtPA•l4t(iMni(JlthromlxMto<ny:266/334(796)UechE"thrcmbectomydlurr:68/334120.4)MkrO-eMheter142/334(42.5)Ufirci:95/334(28.4)P*r»JTibrjS4/S34(16.2)EKOSJ2/334(6⑹So'ibiicFR;5334U.S)Other:16/3S4(48)Ldthcmftpbwc:106(477)Righthrmiiphrre:109(49.1)Urtnowinofmuttiple:3(L4)222(100)90MRCLEANS20152010-2014initiatewithin6hofag500(18)2331360(25.8)MlMCA:154M2MCA:18(7.7)A10CA2ACA1(0.4)203(87.URelnev^stent:190/195(974)Other:5/195(2.6)UechMiolU*<xre>e<toniY♦IAThfombolytka^nt:24/)95(123/IATNombot>iicagentalone:267ICA:78/266(293)MlMCA:165/266(62.0)M2MCA;21/266(7.9)A10fA2ACA2/266fOQ242(90.6)90一Table2.BaselinePatientCharacteristicsandTreatmentParametersbyTreatmentGroupAmongIncludedRandomizedTrialsCharacteristicsSYNTHESIS/62013MRRESCUE.272013IMSIII严2013MRCLEAN严2015Endovascular(n=181)Standard(n=181)Endovascular(n=64)Standard(n=54)Endovascular(n=434)Standard(n=222)Endovascular(n=233)Standard(n=267)Age,mean(SD)or66(11)67(11)64.2(12.8)67.1(16.5)69(23-89)(23-84)65.865.7median(IQR).y(54.5-76.0)(55.5-76.4)Riskfactors.No(%)Women75(41.4)78(43.1)34(53.1)27(50.0)216(49.8)100(45.0)98(42.1)110(41.2)Hypertension102(56.4)105(58.0)54(844)41(759)319(73.5)171(77.0)98(42.1)129(48.3)Atrialfibrillation14(7.7)29(16.0)16(25.0)20(37.0)153(35.3)70(31.5)66(28.3)69(25.8)CoronaryarterydiseaseNSNS102(23.5)72(32.4)Myocardialinfarction10(15.6)14(25.9)33(14.2)42(15.7)Antiplatelettherapy73(403)59(32.6)NSNS186(42.9)108(48.6)64(27.5)80(30.0)CongestiveheartfailureNSNS5(7.8)14(25.9)50(11.5)31(14.0)NSNSHyperlipidemiaNSNS36(563)32(593)215(49.5)112(50.5)58(24.9)71(26.6)Diabetesmellitus20(11.0)19(10.5)12(18.8)14(25.9)94(21.7)54(24,3)34(14.6)34(12.7)PaststrokeNSNS10(15.6)8(14.8)NSNS29(12.4)25(9.4)SmokingNSNS27(42.2)20(37.0)NSNS65/225(28.9)78/252(31.0)怎样才能做出一张无可挑剔的table呢,我有几个小建议:1•绝对不要自已瞎想乱画,先找几篇高质量与你此篇主题相关的Meta分析,看看大牛的fable是怎么做的,他的条目栏都罗列了那些重要信息,有那些是我们可以借鉴的。一篇不够,二篇;二篇不够,三篇。反正就是多看几篇别人高质量的特征表是如何弄的,发挥“拿来主义沖青神能整合尽量整合,然后在白纸上先简单画个草图,看看感觉很厉害的样子。2•要挑剔,国外发SCI非常注重tabic和Figure的美观和实用性,一定不能随随便便,而要精益求精。所以自已要有一双发现美的眼睛,怎样排版美观大方怎样来,感觉自己土包子般的审美观得重新读遍美术课程啊。3.熟练掌握offoceword,好吧这才是最重要的,我要去练习word了。所以,特征表它没有固定框架,只要能详细描述出原始文献的基本信息,同时保持美观大方,让人一看就感觉你呑,就0KTo(再附二张tables,最后一张是我的图,丑哭了有木有)。Table2SummaryofDeviceSnxfeandRandomizedOinlcalTrtoteof TherapyInAcuteIsdienxStrokeRCTsofIAThrombolysisWithControlStuksWMhorn3CcnuolGrotip Group(WrtPAAme“No RCT5ofMechWKalnvsbKtomy'代$UndMdUedolTreatmentAbw(IYrtPAWhwNtxed)MERS20理PeiwinbQPatOIStrokeTrial.2009、IRIV02.2012”SWIFT.2O12fPROACTII,MELT,2CO7"SYNTHESISEXI>20B,w>IMSIII.201护VRRESCUC20BwMRCLEAN,2014wESCAPE,2O15nEXTEND-IA,2015"SWIFTPRIME.M15uMo.ofcenters(sitesbycoontr/)25(US)24(2XS)27(26US)L8(17U»54(USandQnada)57仙叶22A(Italy)58(41US)22<21US)16(theNethertands)22{llGrada,6U£3glUK.andlIrebfld)14(AustraliaaodNewZeaUnd)知(24USandISFurope)Xomly2«lMl125Trew,88Mg,90SOLITAIRE.58Merci.55WJ21control.5少U.57control.57dLAiEV.181W帼181EV><434WdPA,222EVJIVrtPA.64control,$4*EVlIVrtPA.23}codtro;26”EVilYrtPA.165control.15(TEV^lYrtPA,3SIYrtPA,3SEV*IVrtPA.%lYn叭97旳Ji3i&5龄neXMSSCOT*1917Trevo」9SOLITAIRE,18Merci,18W.17(OntfCl,17就14control,14IA1EVJ3IVrtPM3EV*IVrlPA.VWrtPA.16EVtIVrtPA,Pcontrol.17EVilVrtPA.Pcontret18EVilVrtPA.16control.17EV♦IVrtPA,]?IYUP/U3EV♦IVrtFA,I?IVrtPA.17Thefrooionsettoinitiationof从treament,h*43Tre^4.1Merc,4.5SOLITAIRE.4.9Merci,5.3g4.7control5.1叽3.3control.3.4NREVWtPA,3.5EVtIVrtPA.6.4EVlIVrtPA.4.3EVilYrtPA,3.1EV*lYrtPA,3.5EVHVrt叭3.1Iwfromonsettorcpcrfu曲xh出NRNR8,53宙IAi(VJ.8EV»IVdPA.5.4欄EVilVrtPA.5.SEViIVrtfA.4.0EV*IVrtPA,4.1EV♦IVrtPA.42Finalreppdusion9rad?(TIOgr池2or?).No(X>68(482)102(81.6)"eg,76(86.4)Mhciz54(60.0)SOLITAIRE,37(63.8)Merci16(29.1)g71/108(65?)control,9/5008.0)42(73.?)comrol,NRNREVFHPA,EVilVrtPA,243/^24(75.0)2幽(438)EVlIVrtM.EVilVrtPA.EV^VrtPA156/196(79.6)147/156($43)27/29(9kl)EV*IVrtPA.78/83(^0)-Py站<.01<.01<.01

Tabk1BasicctuinutcrisiKrsofincludedstudiesMeta分析Meta分析():质量评价(nien.iX<uinii>IXsifnBasicdal»*M/1(nl:ngfiInravrnlionOuicomcmeasurepVillil?Tn>l<Yinlnft!Tnalcon!Kl1|10|DSMIVRCTKoiipoKrFEcnncd)andMlbrio<21).Focil/TMSMHleftDLPTC.1511/.Fluentire20 qdfor21.URSO1.<0X01VSAcMHolblr^fhlimlparsilkl6^.1tr?.«Y6M)t-K5YMI.4Ti»ui«K5»oninr!0 uithift1w2.BDI2."OHW<.l:P1)KSIII工XH(5tk赠o|l3|DSM4YRCIimalxxiimpoiua〉ad1512hxdrnascrorlenucm.Hz.iio咳Huoxctxi:20ncudLOT2i.HaI.XIIOVSAcomiolkdbliidparallel«i>dyNRSKMl.50tuiiA.5son5c<r!0如sioaszithic$w2.KIX2XK6u*XUPDMill?NRgkgDSM4VRCTi«Mi>pakr andII10FoeiltlMSofffvkftIMPFC>HyIM各Flura«ir«yMngqd41HRS|H|conirolicdMudpuralWnixly67i13Y6*土XIYMLXiuains.15%onf«x12sellerswithiiW2.BDI2.DfucilA帜y.IIIIIIMmDSK4JVRCT(mixb<d >ndFocil/TMS«fdvkftn(PFCSH/03^h*m-rTK<S:erwSard1.RBIlluncun-eomroliedNud(xiraDct««lyY37-72Ymi.lOioa-^Jsorr.siuuutcimp』心fdpa-amact^coilwas2.MADRS2<0(6f'X10d3・UPDRSIRi-iriChen|I5|HAMD>BRCTiRKcbodaxxpoitcd}dMI^H<2I).MM12S.Foci)r7MSefdKleftDi.PT€.51U110<5PACZiix20qdfor91.HRSDI.R05Cliin*CAAtrnlle.l blindp^llel5005-r6$Y6fl?-rJiQYMI.Mltrains,inrcivai10c16feuiccB;w2.VPDR52.<0.D5swbwithinsw111113.>0J)51AERrng|I61HAMD>13RCTiiiiaImxIarcpyilcC)AidMl问gFoci]frwscmv何mciffc.iha«)wSeHmliic30aqdtlr4i.HRSD1.XKI5SOS>35cooftollcdrx-tblinJpar&lkl59.31£7JY5R01土MYMl.Wtroinj.inurvd10v'dfcr4vw2UPDKS2<»MHChina«idxll-lll?."加AAEXkIN.我们确定研究目的,通过检索策略最终纳入数篇studies后(假设10篇吧),就有必要对纳入的文献进行一个评价,关于其质量、方法设计的评价。因为纳入的10篇研究有好有坏,良莠不齐,我们不能一股脑的对其进行简单粗爆的合并,而是需要明确你手里的文章到底是否设计合理,数据是否全面,质量是否过关,至少做到你自己心中有个数,有个秤去评断你合并结果的稳健性与否。高质量的文章合并所得出的结果,也一般是高可信度的。如果再有一定的临床意义,就有信心往高分的杂志进行试投。如果纳进来的文章质量很失水准,有失偏颇,合并的结果连自己都很难说服,更别提是否具有推广价值,借我几个胆也不敢把这篇研究往高质量Journal上投了,这是一个很现实的问题。所以我一直认为从事中医药领域循证医学的同仁么,可能在发文方面不愁,但由于纳入研究质量不过硬,所以文章所发的高度也很受限制,难以突破瓶颈。但对我们这些小喽啰来说,能发就OK了,还挑肥捡瘦,绝对不挑不挑不挑。那说到质量评价,就少不了评价工具和评价标准。市而上对于临床干预RCT的评价方法不一而足琳琅满目百花齐放百家争鸣,看的我目瞪口呆手足无措晕头转向。因为不同的研究机构,不同的专家都会提出自己认为很有效的评价标准,就像做生意一样。我们该挑那件来买单,还得看销售记录啊。我个人一般推荐两种方法1.Cochrane手册的评价标准,共6点,手册以“是”,“否呀IF不清楚”三种做为评价结果,我个人选择给分制,每点低分险时给1分,总分6分为最高(分险最低,质量最好),低次类推。现简单介绍下Cochrane手册的评价要点(只说明何时给1分)。A:Sequencegeneration(序列产生):使用随机数字表,计算机随机,抛硬币,洗扑克或信封,抽签,掷骰子时给1分。B:Allocationconcealment(分配隐藏):中心化分配,同一外观、连续编号的药物容器,不透明的信封给药C:Blinding(盲法):有采用盲法给1分D:Incompleteoutcomedata(不完全结局资料):没有丢失结局数据,采用意向性分析给1分E:Noselectiveoutcomereporting(选择性结局报告):无选择性结局报告给1分。F:Othersourcesofbias(其他偏倚来源):研究表现岀没有其他偏倚来源给1分。我个人认为评价质量挺主观的,很多信息文章里都没有明确说明,但如果都给个“不清楚"也挺残忍的。所以有时我会根据文章它整体的设计,以及它发的分值来适当的打高分。高分杂志的文章有时我会倾向于给高分,低分的文章我会倾向于给低分。Table3:Themethodologicalqualityofincludedstudies-Study.B・CpDpE・Total*Clifford2002・yp4几J、、aThomas2003-Ja4P厶厶NETPD2007.J。4QJ、、J。a <Alexander200"Q」、、42QE3trial2014・」a叭J、、J,&Zhao201"J心QQJoQ2心Wang2014*J*&Pa43“ 4Awkff.201“4G」、、A:Sequenceseneration;B:ABkxationconc-eslment;C:Blindinsofparticipants,personnelandoutcomeassessors;D:IncompleteoutcomedaM;E:Noselectheoutcomereporting;F:Othersourcesofbias;J:hwrbk-Meta分析(五):数据分析前而这几天所讲的内容基木都还属于系统评价(systematicreview)的范畴(流程图、特征表和质量评价表)。而Meta区别于系统评价主要在于它对纳入的原始文献的同类数据进行了有效的合并,通过一定的算法得出一个估计的有效值,可以一定程度实现样本量的扩增,和对目前所有证据的总结(evidencebasedmedicine,EBM),这也是它与一般综述的区别之处,但还是属于综述。其证据等级凌架于RCT之上。讲到数据分析,那少不了统计软件,市面上主要有三款,分别为Revman(傻瓜式操作,入门级选择),Stata(进阶级利器,功能强大)。我主要是用Revman(不要嫌弃我),偶尔应审稿人要求会用下stata软件,但只会一点点。所以我下而的大部分数据分析都是基于Revman实现的。先简单科普下,数据分为两种类型,连续型变量(Coiitimioiis)和二分类变量(Dichotomous)o连续型变量指的是有平均值和标准差的,如临床上的某些量表,以6・5±2・1这样的形式呈现;而二分类变量是表现百分率,如临床上的有效率,10个人里而6个人有效。他们有各自的输入方式和效应值,但总体来说大同小异。我们把纳入文献的原始数据输入到Excel里,然后简单导入到软件,然后根据结果进行分析就可以写文章了。假设纳入10篇文章,我们有3个结局指标(A、E,C)。其中一个主要指标,两个次要指标。A指标:假设有6篇文献里有完整数据,那把这6篇文章的数据进行合并,得一个森林图。B指标:假设有8篇文献里有完整数据,那把这8篇文章的数据进行合并,得一个森林图。C指标:假设有7篇文献里有完整数据,那把这7篇文章的数据进行合并,又得一个森林图。所以并不是每个森林图里每篇文章都要纳入的,一篇Meta分析有几个结局指标就有几个森林图。如果还根据一些变量进行亚组分析,那森林图就更多了,有些文章觉得图太多,会把其中的数据抽取出来做成表格或柱状图,那也是一个不错的选择。总之,我们已经成功的做成了森林图,那我们主要关注图上的几个指标就可以了。异质性检验:I的平方>50%表示合并的结果具有异质性(采用随机效应模型),I的平方<50%表示合并的结果具有同质性(采用固定效应模型),其异质性来源还是多方面的(如临床设计,病人选择,样本大小等有关),此外就是P值,pVO.05说明两组之间存在统计学差异,图上合并的菱形也不会与直线相交,一旦相交就说明两组之间没有差异。最后看下WMD的值和95%的可信区间(这是连续型变量的,二分类的是OR或RR),下图是的0.95(0.51, 1.39)。

StudvorSubarouoMean$DTotalStudvorSubarouoMean$DTotalMeanSOTotalWeiqhtIV.Random.95%ClCALM-PDtrial2009095.2114・16.2108&5%0.10[-1.41,1.61]Hauser2007-5.81.827-6.41.44230.4%0.60[-0]Hoiloway2004054.7150-1.75.415114.9%1.20(0.06.2,34]Hollawy20002.23.21501.14.519329.2%1.10(0.28,1.92]Rascol201004.789-1.65.417912.3%1.60(6]Storch20133.23181.93.1174.7%1.301-0.72,3.32]Total(95%Cl)548690100.0%0.95(0.51,1.39]MeanDifferenceL-dopaaloneL-dopa-sparingtherapyMeanDifferenceRandom.95%Cl-10 ・5 0 5's10FavoursL-dopaaloneFavoursL-dopa-sparingHeterogeneity;Tau2=0.00;Chi2=3.41.df=5(P=0.64);卩=-10 ・5 0 5's10FavoursL-dopaaloneFavoursL-dopa-sparingTestforoveralleffect:Z=4.22(P<0.0001)Meta分析(六):发表偏倚看Meta文献时,会发现每个结果都有一个漏斗图(Funnelplot),如果你有8个结局指标,那岂不是有8个漏斗图。但这么多放在文章里岂不搞笑,所以我一般会挑选里而的主要指标的漏斗图,放在paper里,其它的基木一句轻描淡写带过或者哑口无言不提,再或者放在补充材料里充图数。而漏斗图的功效主要是来检测此结局指标是否存在发表偏倚的(publicationbias),什么是发表偏倚?即发表是否有偏倚。但话说回来,有无发表偏倚并不影响文章的最终发表,只不过我们根据相应的结果,在讨论里进行不同且合适的阐述。那如何检测发表偏倚呢,Revman软件Funnelplot是一个倒三角,样木量越大越集中在上方,但只能目测无法给出统计描述,若两边对称则无明显发表偏倚,两边不对称则可能存在发表偏倚。Stata软件的eggetest和beggtest更进一步,给出了统计描述,其中p>0.05提示无明显发表偏倚,p<0.05存在发表偏倚。所以在准确性上,Funnelplot不如eggertest和beggtest,而后者中Begg不如egger敏感。所以当三则结果不一致时,首先放弃Funnelplot。而eggertest和beggtest结果相悖时,我一般会采用egger的结果做为结果。我个人感觉高分

杂志较倾向于stata,也大部分图表由stata制作,其制件的精良度和简炼度有时还挺惊艳的,而低分的较多由revman合成(当然这不是绝对)而发表偏倚不是你想检测就能检测的,纳入文献的数量必要达标才有必要进行后续的检验(Funnelplotscanbeusedforreviewswithsufficientnumbersofincludedstudies),有人说5篇,有人说7篇,还有人说10篇(我一般采用cochrane的说法,10篇为准)。虽说s怡怡检测发表偏倚较准确,但大部分文章还是选用funnelplot,因为我个人认为发表偏倚这块压根不重要,也根本影响不了你的文章是否能顺利发表,只要你提到、知道并有所描述就OKToDetectingreportingbiasesMeta分析(七):敏感性分析和亚组分析DetectingreportingbiasesMeta分析(七):敏感性分析和亚组分析前而提到将数篇文章进行合并,不同研究之间可能会产生异质性,而碰到异质性时到底该如何处理,也让很多人困惑。有些人直接认为结果不可信,此Meta分析意义不大,不做为佳,这不免让人心伤。另有同道认为需找到异质性来源,进行分析或剔除,再对结果进行说明。我个人倾向于后者,我们要对异质性进行适当的分析和刨根问底,一来希望能捉捕原凶,二来也让文章的梯度分析更加饱满和深层。所以敏感性分析和亚组分析就是面对异质性时较好的选择。敏感性分析的实施方法如下:1•改变分析模型:当异质性较高时(如I的平方>50%),建议采用随机效应模型,相反则采用固定效应模型。但我个人的文章一般都选择随机模型,因为随机模型相对较保守,让结果更倾于安全。目前为止,只要在方法学里讲解清楚了,reviewers对此也没多大提问。2•逐篇排除文献:某结局指标有6篇文献(1-6),分别逐篇剔除1-6后看异质性是否有所改变(同时记录下合并效应值WMD,RR的数值变化)。如果发现出掉第1篇后,异质性发生改变,那么这篇可能就是异质性的来源,可仔细分析其为何会成为异质性的来源,一般可从实验设计,样木量,结局指标,评价标准等多方而着手。如果分别去除6篇后,其异质性均不变,说明结果较为稳健。此两种方式可供选择。那么说说亚组分析,故名思义,就是根据某临床特征做为分据点进行比较,比如年龄(分界年龄根据不同研究自定),性别,干预方式(同类药里的不同剂型),剂量梯度(低、中和高剂量),纳入文献质量评分(评分高与低),某临床评分高低之间比较,治疗时间和随访时间(时间长短)。所以亚组分析并没有固定标准和框框。关键是看你想解释什么问题,因为亚组分析的结果,可能对将来同类型的RCT的实验设计有提示意义。我来例举几个亚组分析的sample.1•年龄:根据年龄界限比较其分别的合并效应值(WMD或RR),看其值大小,来适当说明年龄对最终结果的影响。比如PD中,老年的患者其预后与年轻的比较一般都是较差的。2.剂量梯度:有很多临床文章会做出干预的梯度,我们可以合并各自的梯度然后比较,了解不同剂量对最终合并值的影响。

3•文献质量:高分与低分文章分开比较(一般以3分为界,cochrane手册),看文献质量高低对结局指标有没有作用。以此类推,不同的亚组分析会有不同的结果,然后在讨论部分再对其结果进行解以此类推,不同的亚组分析会有不同的结果,然后在讨论部分再对其结果进行解释,如果解释不了就说是否因为样木量不够,待后续验证。附一张亚组分析的图Subgro叩No.ofTrials(95%Cl)Age.y526.2830,32,33<701.62(0.97-2.72)>701.94(1.06-3.54)Sex328,3032Women1.44(0.84-2.47)Men1.69(0.99-2.87)NIHSSscore3626.2B-3O.32.33<20133(0.98-1.82)>201.84(112-3.02)Subgro叩No.ofTrials(95%Cl)Age.y526.2830,32,33<701.62(0.97-2.72)>701.94(1.06-3.54)Sex328,3032Women1.44(0.84-2.47)Men1.69(0.99-2.87)NIHSSscore3626.2B-3O.32

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论