版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省合肥市庐阳区第六中学数学高一上期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的零点所在的区间为A. B.C. D.2.下列函数中,在上是增函数的是A. B.C. D.3.若偶函数在上单调递减,且,则不等式的解集是()A. B.C. D.4.已知,则为()A. B.2C.3 D.或35.若扇形圆心角的弧度数为,且扇形弧所对的弦长也是,则这个扇形的面积为A. B.C. D.6.若方程x2+2x+m2+3m=mcos(x+1)+7有且仅有1个实数根,则实数m的值为()A.2 B.-2C.4 D.-47.已知幂函数的图象过点,则的值为()A. B.C. D.8.对于函数,下列说法正确的是A.函数图象关于点对称B.函数图象关于直线对称C.将它的图象向左平移个单位,得到的图象D.将它的图象上各点的横坐标缩小为原来的倍,得到的图象9.函数的最大值与最小值分别为()A.3,-1 B.3,-2C.2,-1 D.2,-210.不等式的解集为,则实数的取值范围是()A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.集合,,则__________.12.如果函数满足在集合上的值域仍是集合,则把函数称为H函数.例如:就是H函数.下列函数:①;②;③;④中,______是H函数(只需填写编号)(注:“”表示不超过x的最大整数)13.设函数,若关于x的方程有且仅有6个不同的实根.则实数a的取值范围是_______.14.已知一元二次不等式对一切实数x都成立,则k的取值范围是___________.15.已知函数,的图像在区间上恰有三个最低点,则的取值范围为________16.已知正数x、y满足x+=4,则xy的最大值为_______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知圆,直线,点在直线上,过点作圆的切线,切点分别为.(Ⅰ)若,求点的坐标;(Ⅱ)求证:经过三点圆必过定点,并求出所有定点的坐标.18.某校食堂需定期购买大米已知该食堂每天需用大米吨,每吨大米的价格为6000元,大米的保管费用单位:元与购买天数单位:天的关系为,每次购买大米需支付其他固定费用900元该食堂多少天购买一次大米,才能使平均每天所支付的总费用最少?若提供粮食的公司规定:当一次性购买大米不少于21吨时,其价格可享受8折优惠即原价的,该食堂是否应考虑接受此优惠条件?请说明理由19.已知函数,(,且)(1)求函数的定义域;(2)判断函数的奇偶性,并证明20.已知函数fx=2sin(1)在用“五点法”作函数fx2x-0ππ3π2πx3π5π9πf0200完成上述表格,并在坐标系中画出函数y=fx在区间0,π(2)求函数fx(3)求函数fx在区间-π21.已知函数.(1)求的定义域和的值;(2)当时,求,的值.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】函数的零点所在区间需满足的条件是函数在区间端点的函数值符号相反,函数是连续函数【题目详解】解:函数是连续增函数,,,即,函数的零点所在区间是,故选:【题目点拨】本题考查函数的零点的判定定理,连续函数在某个区间存在零点的条件是函数在区间端点处的函数值异号,属于基础题2、B【解题分析】对于,,当时为减函数,故错误;对于,,当时为减函数,故错误;对于,在和上都是减函数,故错误;故选3、A【解题分析】根据奇偶性,可得在上单调递增,且,根据的奇偶性及单调性,可得,根据一元二次不等式的解法,即可得答案.【题目详解】由题意得在上单调递增,且,因为,所以,解得,所以不等式的解集是.故选:A4、C【解题分析】根据分段函数的定义域求解.【题目详解】因为,所以故选:C5、A【解题分析】分析:求出扇形的半径,然后利用扇形的面积公式求解即可.详解:由题意得扇形的半径为:又由扇形面积公式得该扇形的面积为:.故选:A.点睛:本题是基础题,考查扇形的半径的求法、面积的求法,考查计算能力,注意扇形面积公式的应用.6、A【解题分析】令,由对称轴为,可得,解出,并验证即可.【题目详解】依题意,有且仅有1个实数根.令,对称轴为.所以,解得或.当时,,易知是连续函数,又,,所以在上也必有零点,此时不止有一个零点,故不合题意;当时,,此时只有一个零点,故符合题意.综上,.故选:A【题目点拨】关键点点睛:构造函数,求出的对称轴,利用对称的性质得出.7、A【解题分析】待定系数求得幂函数解析式,再求对数运算的结果即可.【题目详解】设幂函数为,由题意得,,∴故选:A【题目点拨】本题考查幂函数解析式的求解,涉及对数运算,属综合简单题.8、B【解题分析】,所以点不是对称中心,对称中心需要满足整体角等于,,A错.,所以直线是对称轴,对称轴需要满足整体角等于,,B对.将函数向左平移个单位,得到的图像,C错.将它的图像上各点的横坐标缩小为原来的倍,得到的图像,D错,选B.(1)对于和来说,对称中心与零点相联系,对称轴与最值点联系.的图象有无穷多条对称轴,可由方程解出;它还有无穷多个对称中心,它们是图象与轴的交点,可由,解得,即其对称中心为(2)三角函数图像平移:路径①:先向左(φ>0)或向右(φ<0)平移个单位长度,得到函数y=sin(x+φ)的图象;然后使曲线上各点的横坐标变为原来的倍(纵坐标不变),得到函数y=sin(ωx+φ)的图象;最后把曲线上各点的纵坐标变为原来的A(横坐标不变),这时的曲线就是y=Asin(ωx+φ)的图象路径②:先将曲线上各点的横坐标变为原来的倍(纵坐标不变),得到函数y=sinωx的图象;然后把曲线向左(φ>0)或向右(φ<0)平移个单位长度,得到函数y=sin(ωx+φ)的图象;最后把曲线上各点的纵坐标变为原来的A倍(横坐标不变),这时的曲线就是y=Asin(ωx+φ)的图象9、D【解题分析】分析:将化为,令,可得关于t的二次函数,根据t的取值范围,求二次函数的最值即可.详解:利用同角三角函数关系化简,设,则,根据二次函数性质当时,y取最大值2,当时,y取最小值.故选D.点睛:本题考查三角函数有关的最值问题,此类问题一般分为两类,一种是解析式化为的形式,用换元法求解;另一种是将解析式化为的形式,根据角的范围求解.10、C【解题分析】将不等式的解集为,转化为不等式的解集为R,分和两种情况讨论求解.【题目详解】因为不等式的解集为,所以不等式的解集为R,当,即时,成立;当,即时,,解得,综上:实数的取值范围是故选:C【题目点拨】本题主要考查一元二次不等式恒成立问题,还考查了分类讨论的思想和运算求解的能力,属于基础题.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】通过求二次函数的值域化简集合,再根据交集的概念运算可得答案.【题目详解】因为,,所以.故答案为:【题目点拨】本题考查了交集的运算,考查了求二次函数的值域,搞清楚集合中元素符号是解题关键,属于基础题.12、③④【解题分析】根据新定义进行判断.【题目详解】根据定义可以判断①②在集合上的值域不是集合,显然不是H函数.③④是H函数.③是H函数,证明如下:显然,不妨设,可得,即,恒有成立,满足,总存在满足是H函数.④是H函数,证明如下:显然,不妨设,可得,即,恒有成立,满足,总存在满足H函数.故答案为:③④13、或或【解题分析】作出函数的图象,设,分关于有两个不同的实数根、,和两相等实数根进行讨论,当方程有两个相等的实数根时,再检验,当方程有两个不同的实数根、时,或,再由二次方程实数根的分布进行讨论求解即可.【题目详解】作出函数的简图如图,令,要使关于的方程有且仅有个不同的实根,(1)当方程有两个相等的实数根时,由,即,此时当,此时,此时由图可知方程有4个实数根,此时不满足.当,此时,此时由图可知方程有6个实数根,此时满足条件.(2)当方程有两个不同的实数根、时,则或当时,由可得则的根为由图可知当时,方程有2个实数根当时,方程有4个实数根,此时满足条件.当时,设由,则,即综上所述:满足条件的实数a的取值范围是或或故答案为:或或【题目点拨】关键点睛:本题考查利用复合型二次函数的零点个数求参数,考查数形结合思想的应用,解答本题的关键由条件结合函数的图象,分析方程的根情况及其范围,再由二次方程实数根的分布解决问题,属于难题.14、【解题分析】由题意,函数的图象在x轴上方,故,解不等式组即可得k的取值范围【题目详解】解:因为不等式为一元二次不等式,所以,又一元二次不等式对一切实数x都成立,所以有,解得,即,所以实数k的取值范围是,故答案为:.15、【解题分析】直接利用正弦型函数的性质的应用和函数的单调递区间的应用求出结果【题目详解】解:,,根据正弦型函数图象的特点知,轴左侧有1个或2个最低点①若函数图象在轴左侧仅有1个最低点,则,解得,,,此时在轴左侧至少有2个最低点函数图象在轴左侧仅有1个最低点不符合题意;②若函数图象在轴左侧有2个最低点,则,解得,又,则,故,时,在,恰有3个最低点综上所述,故答案:16、8【解题分析】根据,利用基本不等式即可得出答案.【题目详解】解:,当且仅当,即时,取等号,所以xy的最大值为8.故答案为:8.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)点的坐标为或(2)见解析,过的圆必过定点和【解题分析】(1)设,由题可知,由点点距得到,解得参数值;(2)设的中点为,过三点的圆是以为直径的圆,根据圆的标准方程得到圆,根据点P在直线上得到,代入上式可求出,进而得到定点解析:(Ⅰ)设,由题可知,即,解得:,故所求点的坐标为或.(2)设的中点为,过三点的圆是以为直径的圆,设,则又∵圆又∵代入(1)式,得:整理得:无论取何值时,该圆都经过的交点或综上所述,过的圆必过定点和点睛:这个题目考查的是直线和圆的位置关系;一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;还有就是在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值18、(1)10天购买一次大米;(2)见解析.【解题分析】根据条件建立函数关系,结合基本不等式的应用求最值即可;求出优惠之后的函数表达式,结合函数的单调性求出函数的最值进行判断即可【题目详解】解:设每天所支付的总费用为元,则,当且仅当,即时取等号,则该食堂10天购买一次大米,才能使平均每天所支付的总费用最少若该食堂接受此优惠条件,则至少每35天购买一次大米,设该食堂接受此优惠条件后,每x,天购买一次大米,平均每天支付的总费用为,则,设,,则在时,为增函数,则当时,有最小值,约为,此时,则食堂应考虑接受此优惠条件【题目点拨】本题主要考查函数的应用问题,基本不等式的性质以及函数的单调性,属于中档题.19、(1)(2)函数为定义域上的偶函数,证明见解析【解题分析】(1)由题意可得,解不等式即可求出结果;(2)令,证得,根据偶函数的定义即可得出结论.【小问1详解】由,则有,得.则函数的定义域为【小问2详解】函数为定义域上的偶函数令,则,又则,有成立则函数为在定义域上的偶函数20、(1)答案见解析(2)单调递增区间:-π8(3)-2,【解题分析】(1)利用给定的角依次求出对应的三角函数值,进而填表,结合“五点法”画出图象即可;(2)根据正弦函数的单调增区间计算即可;(3)根据x的范围求出2x-π4【小问1详解】2x-0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 董事长公司开业庆典致辞
- 校秋季运动会广播稿(33篇)
- 电工2024年工作总结范文(五篇)
- 工伤事故调解协议书(3篇)
- 小学语文阅读理解16个常考题型和答题技巧
- 第5章-车辆人机学课件
- 工程设计收集资料清单
- 计件工资实施方案(试行)
- 厂级职工安全培训试题答案研优卷
- 员工三级安全培训试题【模拟题】
- 50篇美文背3500单词英译英(全)
- 地铁线路下穿铁路路线风险评估报告
- 餐饮企业消毒记录表模版
- 解除父女关系协议书怎么写(7篇)
- 初中数学北师大八年级上册 一次函数《与一次函数有关的三角形面积问题》教学设计
- 拖欠房租起诉书【5篇】
- 质量问题投诉登记、处理台账
- 弱电智能工程施工资料
- (优质)一年级趣味数学题课件
- (新教材)湘教湘科版四年级上册科学 5.3 怎样比较运动的快慢教学课件
- 多模态环境下的笔译课堂教学模式探究
评论
0/150
提交评论