版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届四川省遂宁市船山区二中高一数学第一学期期末学业质量监测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.若函数在定义域上的值域为,则()A. B.C. D.2.已知向量,满足,,且,则()A. B.2C. D.3.已知集合,,有以下结论:①;②;③.其中错误的是()A.①③ B.②③C.①② D.①②③4.在下列区间中,函数fxA.0,14C.12,5.直线L将圆平分,且与直线平行,则直线L的方程是A.BC.D.6.已知函数,则()A.5 B.2C.0 D.17.已知,,则的值为()A. B.C. D.8.一个几何体的三视图如图所示,则该几何体可以是()A.棱柱 B.棱台C.圆柱 D.圆台9.过点,且圆心在直线上的圆的方程是()A. B.C. D.10.且,则角是()A.第一象限角 B.第二象限角C.第三象限角 D.第四象限角二、填空题:本大题共6小题,每小题5分,共30分。11.,若,则________.12.写出一个值域为,在区间上单调递增的函数______13.在上,满足的取值范围是______.14.函数y=1-sin2x-2sinx的值域是______15.设是R上的奇函数,且当时,,则__________16.设则__________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图所示,在中,已知,,.(1)求的模;(2)若,,求的值.18.已知函数过点(1)求的解析式;(2)求的值;(3)判断在区间上的单调性,并用定义证明19.食品安全问题越来越引起人们的重视,农药、化肥的滥用给人民群众的健康带来了一定的危害.为了给消费者带来放心的蔬菜,某农村合作社每年投入资金万元,搭建甲、乙两个无公害蔬菜大棚,每个大棚至少要投入资金万元,其中甲大棚种西红柿,乙大棚种黄瓜.根据以往的种菜经验,发现种西红柿的年收入、种黄瓜的年收入与各自的资金投入(单位:万元)满足,.设甲大棚的资金投入为(单位:万元),每年两个大棚的总收入为(单位:万元)(1)求的值;(2)试问如何安排甲、乙两个大棚的资金投入,才能使总收入最大20.已知角终边上一点.(1)求的值;(2)求的值.21.已知函数.(1)在给定的坐标系中,作出函数的图象;(2)写出函数的单调区间(不需要证明);(3)若函数的图象与直线有4个交点,求实数的取值范围.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解题分析】的对称轴为,且,然后可得答案.【题目详解】因为的对称轴为,且所以若函数在定义域上的值域为,则故选:A2、B【解题分析】根据向量数量积模的公式求,再代入模的公式,求的值.【题目详解】因为,所以,则,所以,故故选:B3、C【解题分析】解出不等式,得到集合,然后逐一判断即可.【题目详解】由可得所以,故①错;,②错;,③对,故选:C4、C【解题分析】利用零点存在定理即可判断.【题目详解】函数fx=e因为函数y=ex,y=2x-3均为增函数,所以fx又f1=ef12=由零点存在定理可得:fx的零点所在的区间为1故选:C5、C【解题分析】圆的圆心坐标,直线L将圆平分,所以直线L过圆的圆心,又因为与直线平行,所以可设直线L的方程为,将代入可得所以直线L的方程为即,所以选C考点:求直线方程6、C【解题分析】由分段函数,选择计算【题目详解】由题意可得.故选:C.【题目点拨】本题考查分段函数的求值,属于简单题7、C【解题分析】分析可知,由可求得的值.【题目详解】因为,则,因为,所以,,因此,.故选:C.8、D【解题分析】由三视图知,从正面和侧面看都是梯形,从上面看为圆形,下面看是圆形,并且可以想象到该几何体是圆台,则该几何体可以是圆台故选D9、B【解题分析】由题设得的中垂线方程为,其与交点即为所求圆心,并应用两点距离公式求半径,写出圆的方程即可.【题目详解】由题设,的中点坐标为,且,∴的中垂线方程为,联立,∴,可得,即圆心为,而,∴圆的方程是.故选:B10、D【解题分析】直接由三角函数的象限符号取交集得答案.【题目详解】由,可得为第二或第四象限角;由,可得为第一、第四及轴非负半轴上的角∴取交集可得,是第四象限角故选:D二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】分和两种情况解方程,由此可得出的值.【题目详解】当时,由,解得;当时,由,解得(舍去).综上所述,.故答案为:.12、【解题分析】综合考虑值域与单调性即可写出满足题意的函数解析式.【题目详解】,理由如下:为上的减函数,且,为上的增函数,且,,故答案为:13、【解题分析】结合正弦函数图象可知时,结合的范围可得到结果.【题目详解】本题正确结果:【题目点拨】本题考查根据三角函数值的范围求解角所处的范围,关键是能够熟练应用正弦函数图象得到对应的自变量的取值集合.14、[-2,2]【解题分析】利用正弦函数的值域,二次函数的性质,求得函数f(x)的值域,属于基础题【题目详解】∵sinx∈[-1,1],∴函数y=1-sin2x-2sinx=-(sinx+1)2+2,故当sinx=1时,函数f(x)取得最小值为-4+2=-2,当sinx=-1时,函数f(x)取得最大值为2,故函数的值域为[-2,2],故答案为[-2,2]【题目点拨】本题主要考查正弦函数的值域,二次函数的性质,属于基础题15、【解题分析】由函数的性质得,代入当时的解析式求出的值,即可得解.【题目详解】当时,,,是上的奇函数,故答案为:16、【解题分析】先求,再求的值.【题目详解】由分段函数可知,.故答案为:【题目点拨】本题考查分段函数求值,属于基础题型.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】(1)根据向量数量积定义可得,再根据向量加法几何意义以及模性质可得结果(2)先根据向量加减法则将化为,再根据向量数量积定义求值试题解析:(1)==;(2)因为,,所以.18、(1)(2)(3)在区间上单调递增;证明见解析【解题分析】(1)直接将点的坐标代入函数中求出,从而可求出函数解析式,(2)直接利用解析求解即可,(3)利用单调性的定义直接证明即可【小问1详解】∵函数∫过点,∴,∴,得的解析式为:【小问2详解】【小问3详解】在区间上单调递增证明:,且,有∵,∴∴,即∴在区间上单调递增19、(1);(2)当甲大棚投入资金为128万元,乙大棚投入资金为72万元时,总收益最大.【解题分析】(1)根据题意,可分别求得甲、乙两个大棚的资金投入值,代入解析式即可求得总收益.(2)表示出总收益的表达式,并求得自变量取值范围,利用换元法转化为二次函数形式,即可确定最大值.【题目详解】(1)当甲大棚的资金投入为50万元时,乙大棚资金投入为150万元,则由足,可得总收益为万元;(2)根据题意,可知总收益为满足,解得,令,所以,因为,所以当即时总收益最大,最大收益为万元,所以当甲大棚投入资金为128万元,乙大棚投入资金为72万元时,总收益最大,最大收益为282万元.【题目点拨】本题考查了函数在实际问题中的应用,分段函数模型的应用,二次函数型求最值的应用,属于基础题.20、(1)4;(2).【解题分析】(1)根据三角函数的定义可求出,然后分子分母同时除以,将弦化切,即可求出结果;(2)根据三角函数的定义可求出,,再利用诱导公式将表达式化简,即可求出结果.【题目详解】解:(1)因为终边上一点,所以,所以.(2)已知角终边上一点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 放行人员考试-机型练习卷附答案
- 动漫教育教学课程设计
- 制作手工车子课程设计
- 五加二的课程设计
- sql 课程设计 题目描述
- 吸管插土豆课程设计
- 图书馆课程设计书
- 21天亲子运动课程设计
- 四年级上册英语一课一练- Unit 12 Peter can jump high 第一课时 湘少版(三起)(教学版含答案)
- c程序课程设计投票设计
- 河南省郑州外国语中学2024-2025学年九年级上学期期中考试数学试卷(含答案)
- 最好的设备年终总结报告
- DB37-T 4753-2024改性黏土治理赤潮技术规范
- 无人机兴趣班课程设计
- 2024年江苏省淮安市中考语文试题卷(含答案解析)
- 岩土工程单选题100道及答案解析
- GB/T 44589-2024机器人自适应能力技术要求
- 廉洁纪律十道题
- 房地产公司管理制度
- 人工智能-第一章 绪论
- 2024年山西杏花村汾酒集团限责任公司人才招聘71名高频难、易错点500题模拟试题附带答案详解
评论
0/150
提交评论