




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省兰州市第五十一中学2024届数学高一上期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数以下关于的结论正确的是()A.若,则B.的值域为C.在上单调递增D.的解集为2.将化为弧度为A. B.C. D.3.定义在R上的偶函数f(x)满足,当x∈[0,1]时,则函数在区间上的所有零点的和为()A.10 B.9C.8 D.64.Logistic模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数(的单位:天)的Logistic模型:其中为最大确诊病例数.当时,标志着已初步遏制疫情,则约为()A.60 B.65C.66 D.695.在平面直角坐标系中,设角的终边上任意一点的坐标是,它与原点的距离是,规定:比值叫做的正余混弦,记作.若,则()A. B.C. D.6.一半径为2m的水轮,水轮圆心O距离水面1m;已知水轮按逆时针做匀速转动,每3秒转一圈,且当水轮上点P从水中浮现时(图中点)开始计算时间.如图所示,建立直角坐标系,将点P距离水面的高度h(单位:m)表示为时间t(单位:s)的函数,记,则()A.0 B.1C.3 D.47.下列函数中,既是偶函数,又在区间上单调递增的函数为A. B.C. D.8.三棱柱中,侧棱垂直于底面,底面三角形是正三角形,是的中点,则下列叙述正确的是①与是异面直线;②与异面直线,且③面④A.② B.①③C.①④ D.②④9.给定四个函数:①;②();③;④.其中是奇函数的有()A.1个 B.2个C.3个 D.4个10.设,,,则的大小关系是()A B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知,若,则实数的取值范围为__________12.方程的解为__________13.函数的反函数为___________14.设,若存在使得关于x的方程恰有六个解,则b的取值范围是______15.已知一元二次不等式对一切实数x都成立,则k的取值范围是___________.16.若,,,则的最小值为______.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥中,底面是菱形,,且侧面平面,点是的中点(1)求证:(2)若,求证:平面平面18.已知.(1)指出函数的定义域,并求,,,的值;(2)观察(1)中的函数值,请你猜想函数的一个性质,并证明你的猜想;(3)解不等式:.19.已知函数,其中(1)若的最小值为1,求a的值;(2)若存在,使成立,求a取值范围;(3)已知,在(1)的条件下,若恒成立,求m的取值范围20.判断并证明在的单调性.21.6月17日是联合国确定的“世界防治荒漠化和干旱日”,旨在进一步提高世界各国人民对防治荒漠化重要性的认识,唤起人们防治荒漠化的责任心和紧迫感.为增强全社会对防治荒漠化的认识与关注,聚集联合国2030可持续发展目标——实现全球土地退化零增长.自2004年以来,我国荒漠化和沙化状况呈现整体遏制、持续缩减、功能增强、成效明显的良好态势.治理沙漠离不开优质的树苗,现从苗圃中随机地抽测了400株树苗的高度(单位:),得到如图所示的频率分布直方图.(1)求频率分布直方图中实数的值和抽到的树苗的高度在的株数;(2)估计苗圃中树苗的高度的平均数和中位数.(同一组中数据用该组区间的中点值作代表)
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解题分析】A选项逐段代入求自变量的值可判断;B选项分别求各段函数的值域再求并集可判断;C选项取特值比较大小可判断不单调递增;D选项分别求各段范围下的不等式的解集求并集即可判断.【题目详解】解:A选项:当时,若,则;当时,若,则,故A错误;B选项:当时,;当时,,故的值城为,B正确;C选项:当时,,当时,,在上不单调递增,故C错误;D选项:当时,若,则;当时,若,则,故的解集为,故D错误;故选:B.2、D【解题分析】根据角度制与弧度制的关系求解.【题目详解】因为,所以.故选:D.3、A【解题分析】根据条件可得函数f(x)的图象关于直线x=1对称;根据函数的解析式及奇偶性,对称性可得出函数f(x)在的图象;令,画出其图象,进而得出函数的图象.根据函数图象及其对称性,中点坐标公式即可得出结论【题目详解】因为定义在R上的偶函数f(x)满足,所以函数f(x)的图象关于直线x=1对称,当x∈[0,1]时,,可以得出函数f(x)在上的图象,进而得出函数f(x)在的图象.画出函数,的图象;令,可得周期T1,画出其图象,进而得出函数的图象由图象可得:函数在区间上共有10个零点,即5对零点,每对零点的中点都为1,所以所有零点的和为.故选:A4、B【解题分析】由已知可得方程,解出即可【题目详解】解:由已知可得,解得,两边取对数有,解得.故选:B5、D【解题分析】由可得出,根据题意得出,结合可得出关于和的方程组,解出这两个量,然后利用商数关系可求出的值.【题目详解】,则,由正余混弦的定义可得.则有,解得,因此,.故选:D.【题目点拨】本题考查三角函数的新定义,涉及同角三角函数基本关系的应用,根据题意建立方程组求解和的值是解题的关键,考查运算求解能力,属于基础题.6、C【解题分析】根据题意设h=f(t)=Asin(ωt+φ)+k,求出φ、A、T和k、ω的值,写出函数解析式,计算f(t)+f(t+1)+f(t+2)的值【题目详解】根据题意,设h=f(t)=Asin(ωt+φ)+k,(φ<0),则A=2,k=1,因为T=3,所以ω,所以h=2sin(t+φ)+1,又因为t=0时,h=0,所以0=2sinφ+1,所以sinφ,又因为φ<0,所以φ,所以h=f(t)=2sin(t)+1;所以f(t)sint﹣cost+1,f(t+1)=2sin(t)+1=2cost+1,f(t+2)=2sin(t)+1sint﹣cost+1,所以f(t)+f(t+1)+f(t+2)=3故选:C7、C【解题分析】选项A中,函数的定义域为,不合题意,故A不正确;选项B中,函数的定义域为,无奇偶性,故B不正确;选项C中,函数为偶函数,且当x>0时,,为增函数,故C正确;选项D中,函数为偶函数,但在不是增函数,故D不正确选C8、A【解题分析】对于①,都在平面内,故错误;对于②,为在两个平行平面中且不平行的两条直线,底面三角形是正三角形,是中点,故与是异面直线,且,故正确;对于③,上底面是一个正三角形,不可能存在平面,故错误;对于④,所在的平面与平面相交,且与交线有公共点,故错误.故选A9、B【解题分析】首先求出函数的定义域,再由函数的奇偶性定义即可求解.【题目详解】①函数的定义域为,且,,则函数是奇函数;②函数的定义域关于原点不对称,则函数()为非奇非偶函数;③函数的定义域为,,则函数不是奇函数;④函数的定义域为,,则函数是奇函数.故选:B10、C【解题分析】详解】,即,选.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】求出a的范围,利用指数函数的性质转化不等式为对数不等式,求解即可【题目详解】由loga0得0<a<1.由得a﹣1,∴≤﹣1=,解得0<x≤,故答案为【题目点拨】本题考查指数函数的单调性的应用,对数不等式的解法,考查计算能力,属于中档题12、【解题分析】令,则解得:或即,∴故答案为13、【解题分析】先求出函数的值域有,再得出,从而求得反函数.【题目详解】由,可得由,则,所以故答案为:.14、【解题分析】作出f(x)的图像,当时,,当时,.令,则,则该关于t的方程有两个解、,设<,则,.令,则,据此求出a的范围,从而求出b的范围【题目详解】当时,,当时,,当时,,则f(x)图像如图所示:当时,,当时,令,则,∵关于x的方程恰有六个解,∴关于t的方程有两个解、,设<,则,,令,则,∴且,要存a满足条件,则,解得故答案为:15、【解题分析】由题意,函数的图象在x轴上方,故,解不等式组即可得k的取值范围【题目详解】解:因为不等式为一元二次不等式,所以,又一元二次不等式对一切实数x都成立,所以有,解得,即,所以实数k的取值范围是,故答案为:.16、【解题分析】利用基本不等式求出即可.【题目详解】解:若,,则,当且仅当时,取等号则的最小值为.故答案为:.【题目点拨】本题考查了基本不等式的应用,属于基础题.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析【解题分析】分析:(1)可根据为等腰三角形得到,再根据平面平面可以得到平面,故.(2)因及是中点,从而有,再根据平面得到,从而平面,故平面平面.详解:(1)证明:因为,点是棱的中点,所以,平面.因为平面平面,平面平面,平面,所以平面,又因为平面,所以.(2)证明:因为,点是的中点,所以.由(1)可得,又因为,所以平面,又因为平面,所以平面平面点睛:线线垂直的证明,可归结为线面垂直,也可以转化到平面中的某两条直线的垂直问题,而面面垂直的证明,可转化为线面垂直问题,也转化为证明二面角为直二面角.18、(1)的定义域;;;;;(2)详见详解;(3)【解题分析】(1)根据真数大于零,列出不等式组,即可求出定义域;代入函数解析式求出,,,的值.(2)与,与关系,猜想是奇函数,利用奇函数的定义可证明.(3)求出,由对数的运算性质和对数的单调性即可得到所求.【题目详解】(1)要使函数有意义须,函数的定义域是;;;;.(2)由从(1)得到=,=,猜想是奇函数,以下证明:在上任取自变量,所以是奇函数.(2)所以,原不等式等价于所以原不等式的解集为【题目点拨】本题考查函数的定义域的求法和奇偶性的判断与证明,考查不等式的解法,注意应用函数的单调性转化不等式,求解不等式不要忽略了定义域,是解题的易错点,属于中档题.19、(1)5(2)(3)【解题分析】(1)采用换元法,令,并确定的取值范围,化简为关于二次函数后,根据其性质进行计算;(2)将存在,使成立,转化为存在,,求出的最大值列不等式即可;(3)根据第(1)问的信息,将转化为关于的不等式,采用分离参数法,使用基本不等式,求得的取值范围.【小问1详解】令,则,,当时,,解得【小问2详解】存在,使成立,等价于存在,,由(1)可知,,当时,,解得【小问3详解】由(1)知,,则又,则恒成立,等价于恒成立,又,,则等价于即,当且仅当时等号成立20、函数在单调递增【解题分析】根据函数单调性的定义进行证明即可【题目详解】根据函数单调性定义:任取,所以因为,所以,所以所以原函数单调递增。21、(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 外汇期权与期货交易实务考核试卷
- 2024年证券投资法规试题及答案
- 2024年证券从业资格考试全景分析试题及答案
- 2025年两系杂交水稻新组合项目建议书
- 新职工入场安全培训试题附完整答案(网校专用)
- 2023年城市改造提升民生工程情况汇报
- 各个班组安全培训试题及答案原创题
- 羟烷基化单宁酸的制备及其在聚乳酸改性中的应用
- 中医调周法对不明原因性不孕症IUI周期临床疗效的回顾性分析
- 项目部安全管理人员安全培训试题完整参考答案
- 暖通系统调试方案
- 培训学校安全管理制度
- 应用化学专课试题及答案
- 四年级下册劳动教育全册教案设计
- 电梯钢结构井道技术方案-
- 一般公共预算支出编制流程图
- 丽声北极星分级绘本第一级下The King's Yu Player教学设计
- 显微操作技术(全面)
- 两立体相交相贯
- fTU使用说明书
- 日本文学史-中世17页
评论
0/150
提交评论