2024届咸宁市重点中学高一上数学期末复习检测模拟试题含解析_第1页
2024届咸宁市重点中学高一上数学期末复习检测模拟试题含解析_第2页
2024届咸宁市重点中学高一上数学期末复习检测模拟试题含解析_第3页
2024届咸宁市重点中学高一上数学期末复习检测模拟试题含解析_第4页
2024届咸宁市重点中学高一上数学期末复习检测模拟试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届咸宁市重点中学高一上数学期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数在上的部分图象如图所示,则的值为A. B.C. D.2.我国南宋时期著名的数学家秦九韶在其著作《数书九章》中独立提出了一种求三角形面积的方法“三斜求积术”,即的面积,其中分别为的内角的对边,若,且,则的面积的最大值为()A. B.C. D.3.若,,则sin=A. B.C. D.4.下列函数中与是同一函数的是()(1)(2)(3)(4)(5)A.(1)(2) B.(2)(3)C.(2)(4) D.(3)(5)5.函数其中(,)的图象如图所示,为了得到图象,则只需将的图象()A.向右平移个单位长度 B.向左平移个单位长度C.向右平移个单位长度 D.向左平移个单位长度6.为了给地球减负,提高资源利用率,2020年全国掀起了垃圾分类的热潮,垃圾分类已经成为新时尚.假设某市2020年全年用于垃圾分类的资金为3000万元,在此基础上,以后每年投入的资金比上一年增长20%,则该市全年用于垃圾分类的资金开始超过1亿元的年份是(参考数据:,,)()A2026年 B.2027年C.2028年 D.2029年7.点M(1,4)关于直线l:x-y+1=0对称的点的坐标是()A.(4,1) B.(3,2)C.(2,3) D.(-1,6)8.已知a,b,c∈R,那么下列命题中正确的是()A.若a>b,则ac2>bc2C.若a>b,ab<0,则1a>1b D.若a9.已知三条直线,,的斜率分别为,,,倾斜角分别为.若,则下列关系不可能成立的是()A. B.C. D.10.设a>0,b>0,化简的结果是()A. B.C. D.-3a二、填空题:本大题共6小题,每小题5分,共30分。11.在用二分法求方程的一个近似解时,现在已经将根锁定在区间(1,2)内,则下一步可以断定该根所在区间为___________.12.平面向量,,(R),且与的夹角等于与的夹角,则___.13.已知角的终边经过点,则的值是______.14.用秦九韶算法计算多项式,当时的求值的过程中,的值为________.15.放射性物质镭的某种同位素,每经过一年剩下的质量是原来的.若剩下的质量不足原来的一半,则至少需要(填整数)____年.(参考数据:,)16.定义A-B={x|x∈A且xB},已知A={2,3},B={1,3,4},则A-B=______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.求同时满足条件:①与轴相切,②圆心在直线上,③直线被截得的弦长为的圆的方程18.(1)利用函数单调性定义证明:函数是减函数;(2)已知当时,函数的图象恒在轴的上方,求实数的取值范围.19.已知函数在区间上单调,当时,取得最大值5,当时,取得最小值-1.(1)求的解析式(2)当时,函数有8个零点,求实数的取值范围20.求下列各式的值:(1);(2).21.已知.(1)求,的值;(2)求的值.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】由图象最值和周期可求得和,代入可求得,从而得到函数解析式,代入可求得结果.【题目详解】由图象可得:,代入可得:本题正确选项:【题目点拨】本题考查三角函数值的求解,关键是能够根据正弦函数的图象求解出函数的解析式.2、A【解题分析】先根据求出关系,代入面积公式,利用二次函数的知识求解最值.【题目详解】因为,所以,即;由正弦定理可得,所以;当时,取到最大值.故选:A.3、B【解题分析】因为,,所以sin==,故选B考点:本题主要考查三角函数倍半公式的应用点评:简单题,注意角的范围4、C【解题分析】将5个函数的解析式化简后,根据相等函数的判定方法分析,即可得出结果.【题目详解】(1)与定义域相同,对应关系不同,不是同一函数;(2)与的定义域相同,对应关系一致,是同一函数;(3)与定义与相同,对应关系不同,不是同一函数;(4)与定义相同,对应关系一致,是同一函数;(5)与对应关系不同,不是同一函数;故选:C.5、D【解题分析】根据图像计算周期和最值得到,,再代入点计算得到,根据平移法则得到答案.【题目详解】根据图象:,,故,,故,,即,,,当时,满足条件,则,故只需将的图象向左平移个单位即可.故选:D.6、B【解题分析】设经过年之后,投入资金为万元,根据题意列出与的关系式;1亿元转化为万元,令,结合参考数据即可求出的范围,从而判断出选项.【题目详解】设经过年之后,投入资金为万元,则,由题意可得:,即,所以,即,又因为,所以,即从2027年开始该市全年用于垃圾分类的资金超过1亿元.故选:B7、B【解题分析】设出关于直线对称点的坐标,利用中点和斜率的关系列方程组,解方程组求得对称点的坐标.【题目详解】设关于直线对称点的坐标为,线段的中点坐标为,且在直线上,即①.由于直线的斜率为,所以线段的斜率为②.解由①②组成的方程组得,即关于直线对称点的坐标为.故选:B【题目点拨】本小题主要考查点关于直线的对称点的坐标的求法,考查方程的思想,属于基础题.8、C【解题分析】根据不等式的性质或通过举反例,对四个选项进行分析【题目详解】A.若a>b,当c=0时,ac2=bB.若ac>bc,当c<0时,则C.因为ab<0,将a>b两边同除以ab,则1a>1D.若a2>b2且ab>0,当a<0b<0时,则a<b故选:C9、D【解题分析】根据直线的斜率与倾斜角的关系即可求解.【题目详解】解:由题意,根据直线的斜率与倾斜角的关系有:当或时,或,故选项B可能成立;当时,,故选项A可能成立;当时,,故选项C可能成立;所以选项D不可能成立.故选:D.10、D【解题分析】由分数指数幂的运算性质可得结果.【题目详解】因为,,所以.故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解题分析】根据二分法,取区间中点值,而,,所以,故判定根区间考点:二分法【方法点睛】本题主要考察了二分法,属于基础题型,对于零点所在区间的问题,不管怎么考察,基本都要判断端点函数值的正负,如果异号,那零点必在此区间,如果是几个零点,还要判定此区间的单调性,这个题考查的是二分法,所以要算区间的中点值,和两个端点值的符号,看是否异号.零点肯定在异号的区间12、2【解题分析】,与的夹角等于与的夹角,所以考点:向量的坐标运算与向量夹角13、##【解题分析】根据三角函数定义得到,,进而得到答案.【题目详解】角的终边经过点,,,.故答案为:.14、,【解题分析】利用“秦九韶算法”可知:即可求出.【题目详解】由“秦九韶算法”可知:,当求当时的值的过程中,,,.故答案为:【题目点拨】本题考查了“秦九韶算法”的应用,属于基础题.15、【解题分析】设所需的年数为,由已知条件可得,解该不等式即可得结论.【题目详解】设所需的年数为,由已知条件可得,则.因此,至少需要年.故答案为:.16、{2}【解题分析】∵A={2,3},B={1,3,4},又∵A-B={x|x∈A且xB},∴A-B={2}故答案为{2}.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、或.【解题分析】根据题意,设圆心为,圆被直线截得的弦为为的中点,连结.由垂径定理和点到直线的距离公式,建立关于的方程并解出值,即可得到满足条件的圆的标准方程【题目详解】试题解析:设所求的圆的方程是,则圆心到直线的距离为,①由于所求的圆与x轴相切,所以②又因为所求圆心在直线上,则③联立①②③,解得,或.故所求的圆的方程是或.18、(1)略;(2)【解题分析】(1)根据单调性的定义进行证明即可得到结论;(2)将问题转化为在上恒成立求解,即在上恒成立,然后利用换元法求出函数的最小值即可得到所求范围【题目详解】(1)证明:设,则,∵,∴,∴,∴,∴函数是减函数(2)由题意可得在上恒成立,∴在上恒成立令,因为,所以,∴在上恒成立令,,则由(1)可得上单调递减,∴,∴∴实数的取值范围为【题目点拨】(1)用定义证明函数单调性的步骤为:取值、作差、变形、定号、结论,其中变形是解题的关键(2)解决恒成立问题时,分离参数法是常用的方法,通过分离参数,转化为求具体函数的最值的问题处理19、(1);(2).【解题分析】(1)由函数的最大值和最小值求出,由周期求出ω,由特殊点的坐标出φ的值,可得函数的解析式(2)等价于时,方程有个不同的解.即与有个不同交点,画图数形结合即可解得【题目详解】(1)由题知,..又,即,的解析式为.(2)当时,函数有个零点,等价于时,方程有个不同的解.即与有个不同交点.由图知必有,即.实数的取值范围是.【题目点拨】已知函数有零点求参数常用的方法和思路:(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成函数的值域问题解决;(3)数

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论