黑龙江省大庆市红岗区铁人中学2024届高一上数学期末检测模拟试题含解析_第1页
黑龙江省大庆市红岗区铁人中学2024届高一上数学期末检测模拟试题含解析_第2页
黑龙江省大庆市红岗区铁人中学2024届高一上数学期末检测模拟试题含解析_第3页
黑龙江省大庆市红岗区铁人中学2024届高一上数学期末检测模拟试题含解析_第4页
黑龙江省大庆市红岗区铁人中学2024届高一上数学期末检测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

黑龙江省大庆市红岗区铁人中学2024届高一上数学期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数,,如图所示,则图象对应的解析式可能是()A. B.C. D.2.要得到函数y=sin(2x+)的图像,只需把函数y=sin2x的图像A.向左平移个单位 B.向左平移个单位C.向右平移个单位 D.向右平移个单位3.若是的一个内角,且,则的值为A. B.C. D.4.把长为的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是()A. B.C. D.5.某校高一年级有180名男生,150名女生,学校想了解高一学生对文史类课程的看法,用分层抽样的方式,从高一年级学生中抽取若干人进行访谈.已知在女生中抽取了30人,则在男生中抽取了()A.18人 B.36人C.45人 D.60人6.下列函数是奇函数,且在区间上是增函数的是A. B.C. D.7.不等式的解集是()A.或 B.或C. D.8.已知定义在上的偶函数,且当时,单调递减,则关于x的不等式的解集是()A. B.C. D.9.已知是第二象限角,且,则()A. B.C. D.10.已知定义在R上的奇函数满足:当时,.则()A.2 B.1C.-1 D.-2二、填空题:本大题共6小题,每小题5分,共30分。11.如图,在正六边形ABCDEF中,记向量,,则向量______.(用,表示)12.已知幂函数在上单调递减,则______13.已知函数,若,则实数的取值范围为______.14.的值__________.15.已知函数,若、、、、满足,则的取值范围为______.16.化简:________.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.(1)计算:.(2)化简:.18.已知函数,且(1)证明函数在上是增函数(2)求函数在区间上的最大值和最小值19.已知函数(1)若函数为奇函数,求实数的值;(2)判断函数在定义域上的单调性,并用单调性定义加以证明;(3)若函数为奇函数,求满足不等式的实数的取值范围.20.已知函数的部分图象如图所示.(1)求的解析式;(2)将图象上所有点的横坐标变为原来的倍(纵坐标不变),得到的图象.又求的值.21.在直角坐标平面中,角α的始边为x轴正半轴,终边过点(-2,y),且tana=-,分别求y,sinα,cosα的值

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解题分析】利用奇偶性和定义域,采取排除法可得答案.【题目详解】显然和为奇函数,则和为奇函数,排除A,B,又定义域为,排除D故选:C2、B【解题分析】将目标函数变为,由此求得如何将变为目标函数.【题目详解】依题意,目标函数可转化为,故只需将向左平移个单位,故选B.【题目点拨】本小题主要考查三角函数图像变换中的平移变换,属于基础题.3、D【解题分析】是的一个内角,,又,所以有,故本题的正确选项为D.考点:三角函数诱导公式的运用.4、D【解题分析】先得到两个正三角形面积之和的表达式,再对其求最小值即可.【题目详解】设一个正三角形的边长为,则另一个正三角形的边长为,设两个正三角形的面积之和为,则,当时,S取最小值.故选:D5、B【解题分析】先计算出抽样比,即可计算出男生中抽取了多少人.【题目详解】解:女生一共有150名女生抽取了30人,故抽样比为:,抽取的男生人数为:.故选:B.6、B【解题分析】逐一考查所给函数的单调性和奇偶性即可.【题目详解】逐一考查所给函数的性质:A.,函数为奇函数,在区间上不具有单调性,不合题意;B.,函数为奇函数,在区间上是增函数,符合题意;C.,函数为非奇非偶函数,在区间上是增函数,不合题意;D.,函数为奇函数,在区间上不具有单调性,不合题意;本题选择B选项.【题目点拨】本题主要考查函数的单调性,函数的奇偶性等知识,意在考查学生的转化能力和计算求解能力.7、A【解题分析】把不等式左边的二次三项式因式分解后求出二次不等式对应方程的两根,利用二次不等式的解法可求得结果【题目详解】由,得,解得或所以原不等式的解集为或故选:A8、D【解题分析】由偶函数的性质求得,利用偶函数的性质化不等式中自变量到上,然后由单调性转化求解【题目详解】解:由题意,,的定义域,时,递减,又是偶函数,因此不等式转化为,,,解得故选:D9、B【解题分析】先由求出,再结合是第二象限角,求即可.【题目详解】∵∴,∵是第二象限角,∴,∴,故A,C,D错,B对,故选:B.10、D【解题分析】由奇函数定义得,从而求得,然后由计算【题目详解】由于函数是定义在R上的奇函数,所以,而当时,,所以,所以当时,,故.由于为奇函数,故.故选:D.【题目点拨】本题考查奇函数的定义,掌握奇函数的概念是解题关键.二、填空题:本大题共6小题,每小题5分,共30分。11、##【解题分析】由正六边形的性质:三条不相邻的三边经过平移可成等边三角形,即可得,进而得到结果.【题目详解】由正六边形的性质知:,∴.故答案为:.12、##【解题分析】依题意得且,即可求出,从而得到函数解析式,再代入求值即可;【题目详解】解:由题意得且,则,,故故答案为:13、或【解题分析】令,分析出函数为上的减函数且为奇函数,将所求不等式变形为,可得出关于的不等式,解之即可.【题目详解】令,对任意的,,故函数的定义域为,因为,则,所以,函数为奇函数,当时,令,由于函数和在上均为减函数,故函数在上也为减函数,因为函数在上为增函数,故函数在上为减函数,所以,函数在上也为减函数,因为函数在上连续,则在上为减函数,由可得,即,所以,,即,解得或.故答案为:或.14、1【解题分析】由,结合辅助角公式可知原式为,结合诱导公式以及二倍角公式可求值.【题目详解】解:.故答案为:1.【题目点拨】本题考查了同角三角函数的基本关系,考查了二倍角公式,考查了辅助角公式,考查了诱导公式.本题的难点是熟练运用公式对所求式子进行变形整理.15、【解题分析】设,作出函数的图象,可得,利用对称性可得,由可求得,进而可得出,利用二次函数的基本性质可求得的取值范围.【题目详解】作出函数的图象如下图所示:设,当时,,由图象可知,当时,直线与函数的图象有五个交点,且点、关于直线对称,可得,同理可得,由,可求得,所以,.因此,的取值范围是.故答案为:.【题目点拨】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.16、-1【解题分析】原式)(.故答案为【题目点拨】本题的关键点有:先切化弦,再通分;利用辅助角公式化简;同角互化.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1);(2)【解题分析】(1)根据分数指数幂及对数的运算法则计算可得;(2)利用诱导公式及特殊值的三角函数值计算可得;【题目详解】解:(1)(2)18、(1)证明见解析;(2)的最大值为,最小值为.【解题分析】(1)根据求出,求得,再利用函数单调性的定义,即可证得结论;(2)根据在上的单调性,求在上的最值即可.【题目详解】解:(1)因为,可得,解得,所以,任取,则,因为,所以,可得,即且,所以,即,所以在上是增函数;(2)由(1)知,在上是增函数,同理,任取时,,其中,故,即且,故,即,所以在上是减函数,故在上是减函数,在上是增函数,又,,所以的最大值为,最小值为.【题目点拨】方法点睛:利用定义证明函数单调性方法:(1)取值:设是该区间内的任意两个值,且;(2)作差变形:即作差,即作差,并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差的符号;(4)下结论:判断,根据定义作出结论.即取值——作差——变形——定号——下结论.19、(1)(2)函数在上单调递减,证明见解析(3)【解题分析】(1)利用奇函数的定义可得的值;(2)利用单调性定义证明即可;(3)根据的奇偶性和单调性可得的取值范围.【小问1详解】函数的定义域为,因为为奇函数,所以,所以,所以,所以.【小问2详解】函数在上单调递减.下面用单调性定义证明:任取,且,则因为在上单调递增,且,所以,又,所以,所以函数在上单调递减.【小问3详解】因为为奇函数,所以,由得,即,由(2)可知,函数在上单调递减,所以,即,解得或,所以的取值范围为.20、(1);(2).【解题分析】(1)由顶点及周期可得,,再由,可得,从而得解;(2)根据条件得,再结合诱导公式和同角三角函数关系可得解.【题目详解】(1)由图可知,由,得,所以,所以,因为,所以,则,因为,所以,,(2)由题意,,由,得,.【题目点拨】方法点睛:确定的解析式的步骤:(1)求,,确定函数的最大值和最小值,则,;(2)求,确定函数的周期,则;(3)求,常用方法有以下2种方法:①代入法:把图象

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论